与传统系统不同,对量子系统进行的测量总是会改变其状态。在这项工作中,我们比较了两种诊断方案对确定量子奥托热机性能的影响:在一种方案中,每次冲程后测量发动机工作物质的能量(重复测量);在另一种方案中,每次冲程后的能量都记录在一个或两个指针状态中,并且仅在完成规定数量的循环(重复接触)后进行测量。如果只对功或热感兴趣,则单个指针状态就足够了。对于联合功和热诊断,需要两个指针。这些方案适用于奥托发动机,其工作物质由两级系统组成。根据发动机协议,单个循环的持续时间可能是无限的或有限的。由于在重复接触方案中,与重复测量方案相比,测量次数大大减少,因此接触诊断之后和期间的量子相干性比在每次冲程结束时破坏任何相干性的重复测量要好得多。我们证明,在存在重复接触的情况下,发动机的最大功率、可靠性和效率通常优于这些重复测量的品质因数。由于相干持久性的提高,具有有限循环持续时间的热机需要更多的循环才能达到周期性渐近状态。总的来说,我们的结果表明,在理论和实验上,考虑诊断工具的特殊性质对于监测和测试目的以及反馈控制的重要性。
摘要:测量了用于防护 SARS-CoV-2 病毒(直径 100 ± 10 纳米)的布制口罩中使用的 32 种布料(14 种棉、1 种羊毛、9 种合成、4 种合成混纺和 4 种合成/棉混纺)的过滤效率 (FE)、压差 (ΔP)、品质因数 (QF) 和结构参数。还测量了七种聚丙烯基纤维过滤材料,包括外科口罩和 N95 呼吸器。还对天然、合成或天然-合成混纺的多层和混合材料样品进行了额外测量,以模拟布制口罩的构造方法。对材料进行微成像,并针对选定尺寸的 NaCl 气溶胶进行测试,颗粒迁移率直径在 50 至 825 纳米之间。表现最好的五个样品中有三个是 100% 纯棉编织而成,纱线支数较高到中等,另外两个是中等支数的合成纤维编织而成。与最近发表的研究相比,使用混合材料的样品在测量的 FE 与各组分单个 FE 的乘积相比没有表现出显著差异。对于轻质法兰绒,FE 和 Δ P 随着布层数的增加而单调增加,这表明多层布口罩可能对纳米级气溶胶提供更高的防护,最大 FE 由透气性决定(即 Δ P )。关键词:SARS-CoV-2、COVID-19、布口罩、口罩、个人防护、气溶胶、呼吸防护 I
测量电容 (Cs/Cp)、电感 (Ls/Lp)、电阻 (Rs/Rp)、参数:耗散 (DF) 和品质因数 (Q)、阻抗 |Z|、导纳 |Y|、相位角 ( )、等效串联电阻 (ESR)、电导 (Gp)、电抗 (Xs)、电纳 (Bp) 同时测量和显示的任意两个参数注意:s = 串联,p = 并联,ESR 相当于 Rs 测量 |Z|、R、X:000.0001 mohm 至 99.99999 Mohm 范围:|Y|、G、B:00000.01 S 至 9.999999 MS C:00000.01 fF 至 9.999999 F L:0000.001 nH 至 99.99999 H D:.0000001 至 99.99999 Q:.0000000 至 999999.9 相位角:-180.0000 至 +179.9999 度 Delta %:-99.9999 % 至 +99.9999 % 测量基本增强扩展精度:LCR:+/- 0.5%* +/- 0.25%* +/- 0.05%* DF:+/- 0.0050 +/- 0.0025 +/- 0.0005 * 在最佳测试信号电平、最佳 DUT 值且无校准不确定度误差的情况下。使用大约 7000 个附件装置和电缆时,仪器精度可能会低于标称规格。最佳精度要求开路/短路调零期间使用的几何一致性与实际测量过程中装置和电缆上使用的几何一致性。使用非屏蔽开尔文夹和镊子型连接时,这种一致性可能尤其难以实现。实施负载校正并与用户提供的标准进行比较后为 0.25 x(正常精度)。在 3 Z 80k 范围内,100mV 编程 V 1V 或 100mV (编程 I) x (Z) 1V 测试频率:10 Hz 至 500 kHz 分辨率:0.1 Hz 从 10 Hz 至 10 kHz,5 位数字 > 10 kHz 精度:+/-(0.002% +0.02 Hz) 测量速度:基本精度:25 毫秒*/测量增强精度:125 毫秒*/测量扩展精度:1 秒*/测量 * 可能更长,具体取决于测试条件和频率测距:自动或量程保持
[学分:4 (3Th + 1P)] ELT-H-CC-1-1-TH 课程名称:电路理论和电子设备基础 [学分:3;授课时数:45] UNIT-I [12 小时] 电路元件:电阻和电阻器:类型、颜色编码和额定功率,可变电阻器,电容和电容器:类型、颜色编码和额定电压,电感和电感器:类型、颜色编码,电感线圈,空心和铁心线圈,自感和互感,变压器。电路分析:电压和电流源的概念,与电感器相关的磁通漏守恒和与电容器相关的电荷,基尔霍夫电压定律,基尔霍夫电流定律,电压和电流源的变换,网格分析和节点分析,星三角网络和转换。直流分析:直流激励下串联 RL 和 RC 电路的瞬态响应。交流分析:电路参数响应、交流激励下串联 RL、RC 和 RLC 电路的频率响应、电感器和电容器的品质因数 (Q)、串联和并联谐振电路、Q 因数。网络定理:叠加定理、戴维南定理、诺顿定理、互易定理和最大功率传输定理。第二单元 [11 小时] 半导体基础:半导体材料:类型和特性,固体能带的概念:金属、绝缘体和半导体、本征和非本征半导体、P 型和 N 型半导体、能带图、有效质量的概念、直接和间接带隙半导体、费米能级、态密度、半导体中电流传导的机制(漂移和扩散)、漂移速度、迁移率、电阻率、电导率、霍尔效应(无推导)。结型二极管及其应用:PN 结:晶圆级结构、能带图、耗尽层、二极管方程和 IV 特性、理想二极管、静态和动态电阻、反向饱和电流、齐纳和雪崩击穿、齐纳二极管、作为电压调节器的齐纳二极管、整流器:半波整流器、全波整流器(中心抽头和桥式)、峰值反向电压、纹波系数、效率、线路调节率、负载调节率、变压器利用率、并联电容滤波器、泄放电阻器的概念。
第一周:RFIC 和通信电子简介,(RF 微电子学书籍和高频集成电路书籍的第 2 章) 第二周:器件建模(MOS 和 BJT RF 器件模型、晶体管操作、晶体管截止频率),(高频集成电路书籍的第 4 章) 第三周:器件建模、无源元件(电感器、电容、电阻性能和 RF 模型,(高频集成电路书籍的第 4 章和 RF 微电子学书籍的第 7 章) 其他一些参考文献: “MOS 晶体管的操作和建模”Yannis Tsividis、Mc-Graw Hill “用于 RFIC 设计的 MOS 晶体管建模”,Enz 等,IEEE Transaction on Solid- State Circuits,第 35 卷,2000 年 第 4 周:匹配网络的阻抗匹配和品质因数, 第五周:放大器的匹配网络、L 匹配、Pi 匹配、分布式放大器、反馈网络第六周 低噪声放大器(LNA)设计,(《射频微电子学》一书的第 5 章和《高频集成电路》一书的第 7 章) 第 7 周:带 CS、CG 级、具有电感衰减的 LNA,(《射频微电子学》一书的第 5 章和《高频集成电路》一书的第 7 章) 第 8 周:电路噪声分析(热噪声/闪烁噪声)噪声系数 第 9 周:线性和非线性(IM3- IM2)1dB 压缩、互调失真、截取点、交叉调制。期中考试 I 第 10 周:混频器和频率转换(混频器噪声)、无源转换、有源转换、I/Q 调制 PPF,(《高频集成电路》一书的第 9 章、《射频微电子学》一书的第 6 章) 第 11 周:不同的发射器/接收器架构。外差、同差、镜像抑制比 第 12 周:VCO 和振荡器:VCO 基础和基本原理、振荡器的反馈视图、交叉耦合振荡器(《高频集成电路》一书第 10 章、《射频微电子学》一书第 8 章)。 第 13 周:具有宽调谐范围和变容二极管 Q 值限制的压控振荡器、相位噪声概念和分析、低噪声 VCO 拓扑(《高频集成电路》一书第 10 章、《射频微电子学》一书第 8 章) 期中考试 II 第 14 周:用于 SNR、BER、EVM 和不同调制的收发器架构(《高频集成电路》一书第 10 章、《射频微电子学》一书第 8 章) 第 15 周:具有不同通信调制/解调的收发器架构和设计示例、注意事项/讲座 29 30 /发射机和接收机的一般考虑
举办了 15 次短期培训访问,并进行了 42 次流动。开发了总结联盟提供的 RI 和服务的最新情况的数据库,确定了可能缺少的基础设施/服务,以实现最新 CST 实施计划的目标,并与利益相关者进行了讨论。最终确定了协调融资机会的概念说明,并举办了研讨会。EU-SOLARIS 成为 ERIC。与其他 CST 相关的欧盟项目和国际倡议开展合作。准备了实施 TA 活动的文件。发起了 5 次电话会议;完成了 4 次访问活动。4 次关于 TA 的网络研讨会。制定了熔盐 (MS) 对结构材料的动态腐蚀协议,研究了材料作为潜热或显热能储存介质的可行性的方法,并制定了原型测试指南。确定了 MS 回路的关键组件,并审查了当前程序。举办了关于 CSP MS 工厂组件特性的传播研讨会。制定了报告 DWT 系统行为的协议和指南,对适当的测试程序进行了通用定义,以评估 DWT 中要实施的新组件和材料的性能,改进了模拟软件并验证了其中使用的相关性。实施了新的实验装置。完成了开发用于热力学、动力学和循环稳定性测试的标准化材料测试的工作。对太阳能燃料 (SF) 生产工艺领域的 200 多种出版物进行了文献综述,并用于制定 SF 生产反应堆的品质因数。改进了用于评估 CSP 接收器热机械性能的测试台并进行了首次太阳能测试。组装了相机原型,基于一种改进 CSP 太阳能接收器温度测量的新方法。进行了 RRT 发射率测量。使用红外摄像机进行了参数识别以确定线性集热器管的温度。改进了加速老化装置。制定了脏污镜测量指南,分析了脏污散射行为,并提供了基于模型的分析传递函数。在测试台和太阳能集热器上生成了更多 REPA 负载数据,包括传感器数据分析。开发了新的抛物面槽 (PT) 接收器热损失测量程序。验证了混合预测模型,开发了预测模型。研究了使用天空成像仪数据对 PT 性能参数确定准确性的影响。发表了菲涅尔 RI 对 DNI 变化的稳健性。LFR
量子计算依赖于开发能够抵抗汉密尔顿量中微小且不受控制的参数变化的量子设备。人们可以通过实时估计这种不受控制的变化来应用反馈,以稳定量子设备并提高其相干性。这项任务对于许多量子平台(如自旋、超导电路、捕获原子和其他用于抑制或纠正错误的平台)都很重要。半导体自旋量子比特具有长相干时间、紧凑尺寸以及与现有半导体技术大规模集成的潜力,因此具有吸引力。然而,到目前为止,自旋量子比特凭借所选设备的高保真操作而大放异彩。进一步的可扩展性和可重复性可能需要主动补偿环境波动。在本论文中,我们专注于实时闭环反馈协议,以估计量子比特汉密尔顿量参数的不受控制的波动,然后提高量子比特旋转的质量。首先,我们使用低延迟量子控制器相干地控制自旋量子比特。该协议使用在砷化镓双量子点中实现的单重态-三重态自旋量子比特。我们在两个控制轴上建立实时反馈,并提高相干自旋旋转的最终品质因数。即使汉密尔顿量的某些分量完全受噪声控制,我们也展示了噪声驱动的相干控制。作为一种应用,我们在两个波动的控制轴存在的情况下实现了 Hadamard 旋转。接下来,我们提出了一种基于物理的实时汉密尔顿估计协议。我们通过根据福克-普朗克方程更新其概率分布来实时估计双点内波动的核场梯度。我们通过基于先前的测量结果自适应地选择电子单重态对的自由演化时间,进一步改进了基于物理的协议。与以前的方案相比,该协议将估计速度提高了十倍。最后,我们提出了一种自适应频率二进制搜索方案,用于有效跟踪共振驱动量子比特中的低频波动。我们实时地实施贝叶斯算法来估计磁通可调的 transmon 量子比特中的低频磁通噪声,其相干性和保真度得到了改善。此外,我们通过门集层析成像显示,我们的频率跟踪协议最大限度地减少了系统中的漂移量。我们的方法引入了闭环反馈方案,旨在减轻退相干的影响并延长量子系统的寿命。这篇论文推动了该领域的发展,即集成量子比特硬件和控制硬件,并实施计算机科学中的贝叶斯估计和优化方法。
新兴的宽带隙 (WBG) 半导体有望推动全球产业发展,就如同 50 多年前硅 (Si) 芯片的发明推动了现代计算机时代的到来一样。基于 SiC 和 GaN 的器件正开始变得更加商业化。与同类的基于 Si 的元件相比,这些 WBG 器件更小、更快、更高效,在更严苛的操作条件下也能提供更高的可靠性。此外,在此框架下,一种新型微电子级半导体材料被创造出来,其带隙甚至比之前建立的宽带隙半导体(如 GaN 和 SiC)还要大,因此被称为“超宽带隙”材料。这些材料包括 AlGaN、AlN、金刚石和 BN 氧化物基材料,它们在理论上具有更优越的性能,包括更高的临界击穿场、更高的工作温度和潜在的更高辐射耐受性。这些特性反过来又使得革命性的新器件可用于极端环境成为可能,例如高效功率晶体管(因为巴利加品质因数有所提高)、超高压脉冲功率开关、高效 UV-LED、激光二极管和 RF 电子设备。本期特刊发表了 20 篇论文,重点关注基于宽带隙的器件:设计、制造和应用。三篇论文 [1-3] 涉及未来 5G 应用和其他高速高功率应用的 RF 功率电子设备。其中九篇论文 [4-12] 探讨了宽带隙高功率器件的各种设计。其余论文涵盖了基于宽带隙的各种应用,如用于提高 GaN 基光子发射器光子提取效率的 ZnO 纳米棒 [13]、InGaZnO 薄膜晶体管 [14]、宽带隙 WO3 薄膜 [15]、银纳米环 [16、17] 和 InGaN 激光二极管 [18-20]。特别是在 RF GaN 器件方面,Kuchta 等人 [1] 提出了一种基于 GaN 的功率放大器设计,该设计降低了透射率畸变。Lee 等人 [2] 展示了一种用于 2.5 至 6 GHz 干扰系统的紧凑型 20 W GaN 内部匹配功率放大器,它使用高介电常数基板、单层电容器和分流/串联电阻器实现低 Q 匹配和低频稳定。 Lin 等人 [3] 通过集成厚铜金属化层实现了 Ka 波段 8.2 W/mm 的高输出功率密度。关于 GaN 功率器件,Wu 等人 [4] 研究了一种双 AlGaN 势垒设计以实现增强模式特性。Ma 等人 [5] 介绍了一种使用 GaN 的数字控制 2 kVA 三相分流 APF 系统。Tajalli 等人 [6] 通过进行缓冲分解研究了 GaN-on-Si 外延结构中垂直漏电和击穿的起源。可以确定每个缓冲层与垂直漏电和击穿电压相关的贡献。Sun 等人 [7] 研究了 GaN-on-Si 外延结构中垂直漏电和击穿电压的分布。[7] 提出了一种利用 TCAD 实现常关型 GaN HEMT 的新方法。该概念基于将栅极沟道方向从长水平方向转置为短垂直方向。Mao 等 [8] 在 IGBT 的集电极侧引入了一部分 p-polySi/p-SiC 异质结,以在不牺牲器件其他特性的情况下降低关断损耗。Kim 等 [9] 实现了 SiC 微加热器芯片作为下一代功率模块的新型热评估设备,并评估了其耐热性能。