新的场面活动引导和控制系统可为机场内的飞机 和车辆编定识别标牌。 The new Surface Movement Guidance and Control System Atenna (SMGCS) generates target identification labels for aircraft and vehicles on the airfield.
[1] 创新设计竞争力战略研究 [J]. 中国工程科学 , 2017, 19(3): 100-110. Competitive Strategy for Innovative Design in China[J]. Strategic Study of CAE, 2017, 19(3): 100-110. [2] 路甬祥 . 论创新设计 [M]. 北京 : 中国科学技术出版 社 , 2017. LU Yong-xiang. On Innovative Design[M]. Beijing: China Science and Technology Press, 2017. [3] ENDSLEY M R. Toward a Theory of Situation Aware- ness in Dynamic Systems[J]. Human Factors, 1995, 37(1): 32-64. [4] 卫宗敏 . 面向复杂飞行任务的脑力负荷多维综合评估 模型 [J]. 北京航空航天大学学报 , 2020, 46(7): 1287- 1295. WEI Zong-min. A Multi-dimensional Comprehensive Evaluation Model of Mental Workload for Complex Flight Missions[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(7): 1287-1295. [5] BAUMGARTNER N, MITSCH S, MÜLLER A, et al. A Tour of be Aware: a Situation Awareness Framework for Control Centers[J]. Information Fusion, 2014, 20(15):
• MBSE 的系统架构• MBSE 的一致性原则• MBSE 模型导向的系统工程环境• 基于MBSE 、 M&S 及T&E 的系统发展• 具系统规范的系统模型( System Model ) • 具系统整合的系统模型( System Model ) • 具人机均可辨认的系统模型( System Model ) • SET : 系统工程的转型架构• SET : 系统整合的建模环境• CBTE : 战力导向的测评架构• CBTE : 战力导向的系统发展• 战力导向的系统获得
半导体关连产业が集积するリサーチ・コンプurekkusuの代名词であ るベルギーのimec (校际微电子中心)を 参考とし、卓越した研究力を中心に「人・知・资源の好循环」のハブとなる异分野融合エコshisutemu「广岛研究与创新谷(Hi-RIV)」を形成
英语语言文学 English Language and Literature 2.5 RMB22,800 yuan/year 俄语语言文学 Russian Language and Literature 2.5 RMB22,800 yuan/year 法语语言文学 French Language and Literature 2.5 RMB22,800 yuan/year 德语语言文学 German Language and Literature 2.5 RMB22,800 yuan/year 日语语言文学 Japanese Language and Literature 2.5 RMB22,800 yuan/year 外国语言学及应用语言学 Linguistics and Applied Linguistics in Foreign Languages 2.5 RMB22,800 yuan/year 翻译学 Translatology 2.5 RMB22,800 yuan/year
TECH是多功能的代名词:你将能够从任 何有互联网连接的设备上连接到虚拟教 室,无论是从电脑、平板电脑还是手机。 这个100%在线课程,让你 能够随时随地更新正常老 化的基这个认知过程"
1 )交互性与安全性的矛盾问题。在当前智能座 舱所处的发展阶段,新型人车交互方式的安全性尚需 要进一步检验,繁复的人机交互会对驾驶人造成分神 影响甚至带来安全隐患;在未来智能座舱发展的第三 阶段,还将面临着人车交互的信任问题。解决该问题 是智能座舱实现实质性发展的关键。 2 )舱内交互与舱外交互的协同问题。智能座舱 作为移动生活智慧终端的“第三空间”,其交互范畴 需全面覆盖汽车舱内及舱外的立体化时空场景,不仅 需要解决舱内的人机交互问题,也要解决舱外的人机 交互问题,以及舱内舱外人机交互的协同问题。现有 研究已部分解答了该问题,但仍需结合真实应用场景 继续深入研究。 3 )智能座舱与其他智慧生活形态的连接问题。 汽车智能座舱是智慧城市的重要组成部分,其交互设 计不是孤立的,需有机对接到整个智慧城市的系统 中。目前,对该问题的研究关注还比较少,有较大的 研究空间。 4 )智能交互的应用实现问题。虽然智能交互的 部分关键技术已实现了突破,但离普遍应用还较远。 其根本原因在于交互技术的发展还不够充分,主要体 现在信息感知、信息传输、信息处理等三个方面,具 体为传感探测仪器的精度不足、高速物联通信基础设 施建设不足、芯片及软件产品的算力不足。这些问题 的解决将决定智能座舱交互设计的发展速度。 综合以上研究现状与问题分析,汽车智能座舱交 互设计的发展趋势总结如下: 1 )交互模态多元化、复合化。基于视觉、听觉、 触觉等多感官通道的立体融合式交互模态将成为主 流,结合更加深入的效率、安全、信任等人机交互研 究,将逐渐发展成为全面的智能交互体系。 2 )交互方式人性化、情感化。虽然交互模态日 益多元化,但座舱人机交互的方式将变得越来越简 单,汽车将自发迎合人的自然交互习惯,让驾驶员以 更少的注意力完成更多的人机交互,从而找到智能座 舱交互性与安全性的平衡点。同时座舱人机交互将更 注重对人的情感需求的感知与响应,成为情感化的智 能伙伴。 3 )交互设计场景化。智能座舱的交互设计将结 合更多的场景催生更丰富的交互方案,不仅从车内场 景扩展到车外场景,也会由单一场景扩展到复合场 景,甚至扩展到智慧生活的任意场景中,并实现交互 模式的订制化,使汽车智能座舱真正成为未来智慧生 活空间的一部分。 4 )交互相关技术日益成熟。在国家政策的持续 引导与驱动下,硬件技术、软件技术、物联通信基础 设施等都将迎来持续的建设、发展与完善,为智能座 舱交互设计的全面发展提供技术基础。
1。自动机器学习的更广泛主题2。对端到端自主驾驶,视觉感知的应用研究3。构建未来的数据中的自动智能AI系统4。探索AI和科学的跨学科未来研究可能性,最好使用AI帮助知识发现