小组被引导讨论关键的土地使用主题。鼓励参与者在印刷的地图上标记他们希望看到变化的地方。演示中的最终地图和笔记后来被用于分析趋势和规划方向,这些趋势和方向总结在右侧的合成地图中。每个叠加的形状代表一个小组的想法。有几个区域有堆叠的形状,代表来自几个小组的相应想法。
我们提出了一种自适应物理学的深层均质化神经网络(DHN)方法,以制定具有不同微结构的弹性和热弹性周期性阵列的全场微力学模型。通过完全连接的多层连接的单位细胞溶液通过最大程度地限制根据应力平衡和热传导部分微分方程(PDE)的残差之和,以及无界面的无牵引力或绝热边界条件。相比,通过引入具有正弦函数的网络层直接满足周期性边界条件。完全可训练的权重施加在所有搭配点上,这些搭配点与网络权重同时训练。因此,网络会在损耗函数中自动为界面附近(尤其是单位细胞解决方案的具有挑战性的区域)中的搭配点分配更高的权重。这迫使神经网络在这些特定点上提高其性能。针对有限元素和弹性解决方案的自适应DHN的精度分别用于椭圆形和圆柱孔/纤维的弹性解决方案。自适应DHN比原始DHN技术的优点是通过考虑局部不规则的多孔架构来证明合理的,孔隙 - 孔相互作用使训练网络特别缓慢且难以优化。
2022 Mesa County总体规划(计划)将是一份总体规划文件,将指导开发并为未合并的梅萨县提供适当的土地使用决策框架。该计划还应支持,与之一致,并有助于改善更大的梅萨县社区的长期愿景。制定计划将为公民,开发商,企业,非营利组织,当地司法管辖区和利益相关者共同努力,为梅萨县的未来创造和阐明广泛的愿景。将制定特定目标和政策,以指导发展决策和对梅萨县2020年土地开发法(LDC)的更新。此外,将确定性能指标以跟踪和合格成功实施该计划。采用后,该计划将取代1996年梅萨县总体规划。该项目管理策略(策略)的目的是创建一个成功顾问将用来帮助梅萨县创建新的总体计划的大纲。此外,该策略将为顾问,员工,当选和任命官员以及公众设定发展和处理期望。
她的忠诚 安娜·玛丽(这是德兰嬷嬷小时候的名字)刚满十三岁,上帝就把她亲爱的母亲召唤到自己身边。她一直是她母亲的甜蜜安慰,尤其是在她母亲奄奄一息的最后几个小时里,她更是她天堂般的慰藉,从未离开过她身边。整个沉闷的夜晚,安娜·玛丽守在母亲身边祈祷,她唯一的愿望就是把她所能给的一切都给即将离开她的母亲,而她最爱的母亲。因此,我们看到,即使在少女时代,圣洁的德兰嬷嬷也忘我而忠诚地坚持着。难怪在晚年,她似乎很容易就放弃了本该属于自己的睡眠和休息。当工作或慈善事业使她无法在适当的时间吃饭时,她会完全不吃饭,以免给她的修女们增加额外的工作。在她亲爱的母亲去世后,安娜·玛丽不想让外界帮助她处理那些必须做的事情,因为在她挚爱的母亲的遗体永远被埋葬之前,这些是她能做的最起码的事情。她亲自全权负责葬礼安排;照顾好一切,以远超她年龄的远见和勇气面对局面。然而,她可以像利雪圣母、圣婴耶稣圣女德肋撒一样说得好,从一开始,她的道路就布满荆棘,而不是玫瑰。从此,困难接踵而至;然而,此时她已经掌握了完全依赖上帝的艺术,因此没有障碍对她来说太过困难。她面对所有障碍,以她天生的适应能力掌控每一种情况。
候选人参加贸易测试/筛选测试(学习许可证/许可证付款收据以及警方没收许可证的收据)时必须携带有效的原始重型机动车驾驶执照,将不予考虑,必须具有四年的机场坡道设备维护和操作以及坡道处理程序经验或汽车/液压设备制造商或其授权服务中心的汽车/液压设备的维护和操作经验(对于焊工,四年经验应该高于最低资格经验,即总共五年经验)
深度学习时代通过利用广泛传感器产生的大数据和不断增长的计算能力,为无处不在的机器人应用提供了巨大的机会。而对自然人机交互 (HRI) 的日益增长的需求以及对能源效率、实时性能和数据安全的关注,则推动了新的解决方案的产生。在本文中,我们提出了一种基于大脑启发式脉冲神经网络 (SNN) 的人机听觉接口,即 HuRAI。HuRAI 将语音活动检测、说话人定位和语音命令识别系统集成到一个统一的框架中,该框架可以在新兴的低功耗神经形态计算 (NC) 设备上实现。我们的实验结果证明了 SNN 的卓越建模能力,可以对每个任务实现准确而快速的预测。此外,能源效率分析揭示了一个引人注目的前景,与在最先进的 Nvidia 图形处理单元 (GPU) 上运行的等效人工神经网络相比,其能源节省高达三个数量级。因此,将大规模 SNN 模型的算法能力与 NC 设备的能源效率相结合,为实时、低功耗机器人应用提供了一种有吸引力的解决方案。2021 Elsevier BV 保留所有权利。
镍基高温合金一直在满足燃气轮机对高温材料的需求,以提高工作温度 (T) 并实现更高的效率 [1]。然而,要进一步突破燃气轮机在 T > 1600 C 下的运行极限,就需要发现和开发除相当昂贵的镍基高温合金之外的新型合金。最近对合金探索的兴趣促使人们偏离传统的合金化策略,探索相图中心,从而产生了一种新的合金,即多主元合金 (MPEA) [2]。与沉淀强化合金相比,MPEA 具有单相/双相固溶体(由多种组成元素的比例相当导致的相对“更高”的混合熵驱动),这些固溶体在较高温度下稳定,即使在升高的 T 下也能保持优异的机械、腐蚀和热性能 [2e18]。 MPEA 可用的成分范围非常广泛,而且人们对使用计算和机器学习技术加速合金发现的兴趣日益浓厚,这促进了具有目标特性的 MPEA 的高通量设计研究[8、9、11、12、15、17、19 e 22]。尽管如此,在实验室规模上对这些成分的预测相 / 特性的验证通常仅限于电弧熔炼 [23、24]、机械合金化、放电等离子烧结 [25] 和薄膜沉积 [26]。基于激光沉积的增材制造 (AM) 技术的进步为高通量合成 MPEA 提供了机会,它提高了可扩展性,可以将合金和组件设计结合起来,以获得应用驱动的材料特性 [27 e 36]。然而,AM 的优势有时会被制造方面的挑战所取代,包括材料中的孔隙率