首次对苏加诺哈达国际机场飞机着陆起飞循环的污染物排放(CO、HC 和 NOx)和燃料消耗进行了评估。我们按飞机类型重点介绍了大型飞机,它们是该机场及其周边地区污染物排放的最大贡献者。进行分析以精确确定它们与燃料消耗之间的关系。提供了不同运行模式(滑行和起飞)的飞机污染物分布,并进行了比较。还确认了它们的扩散和影响。为了改善飞机对环境的影响,需要与空中导航功能相关的具体指导。空中交通管理局应更新现有指导,印度尼西亚政府应扩大对现有环境政策的修订。机场运营商、政府环境委员会、航空公司、空中交通管理人员和飞机制造商应积极参与,以评估减少排放对机场周边社区影响的可能解决方案的潜在益处。政府和飞机运营商都应采取行动,减少飞机的温室气体排放并节省燃料。可持续性是航空业面临的一个关键问题,航空业一致致力于为这个国际机场的可持续未来制定全球解决方案。 2013 Trade Science Inc. - 印度
沙巴雄心勃勃,计划建设东南亚最大的电池储能系统 (BESS),成为各大媒体的头条。电池储能系统利用电池储存太阳能和风能等可再生能源产生的能量,以后用于平衡电网的供需或提供备用电源。沙巴将通过沙巴电力私人有限公司 (SESB) 在东海岸的拿笃区开发大型 100MW BESS 项目。该设施将能够储存 400MWh 的能源,超过新加坡目前东南亚最大的 285MWh 巨型集装箱电池系统。国家能源有限公司 (TNB) 拥有 SESB 80% 的股份,沙巴州政府持有剩余的 20%。该项目将于本月开始,预计于 2025 年 6 月底完工。尽管该系统需求旺盛,但根据 BMI Research 的数据,其成本高得令人望而却步,平均安装成本约为每千瓦 270 美元。仅拉哈达图项目的工程、采购和施工部分就估计耗资 6.45 亿令吉。这部分工作被授予 Seal Inc Bhd 的联营公司 MSR Green Energy Sdn Bhd。那么,SESB 的财务回报是什么?它将如何为这个项目提供资金?
II。 波函数的正常函数III。 叠加原理和量子测量IV。 平均值 /期望值e。不确定性关系f。概率密度和表达概率电流密度g的连续性方程。希尔伯特空间h。对3D真实空间向量的简要回忆(评论)i。 简要回忆傅立叶扩展(评论)j。 希尔伯特矢量空间的介绍i。式符号II。 矩阵形式2的操作员 量子信息章节前奏:量子测量b。 简介c。产品状态d。纠缠状态e。矩阵形式f。 Bloch球G。基本大门h。 Pauli&Hadamard运营商i。克利福德门 更多逻辑门k。受控的保利,控制的哈达玛德和受控的toffoli大门。贝尔的不平等。 Grover的算法。基本的公钥分布o。 基本量子传送3。 隧道 简介b。通过单个障碍i。派生II。 宽障碍c。通过单个矩形屏障d进行隧道时间d。隧道虽然是双屏障谐振隧道结构i。谐振隧道二极管 - 定性讨论e。 Breit-Wigner公式f。穿过多个障碍4。 量子点,井和纳米线:变量a的分离。 使用有效的质量方程式b进行变量分离的简介b。量子点c。量子井II。波函数的正常函数III。 叠加原理和量子测量IV。 平均值 /期望值e。不确定性关系f。概率密度和表达概率电流密度g的连续性方程。希尔伯特空间h。对3D真实空间向量的简要回忆(评论)i。 简要回忆傅立叶扩展(评论)j。 希尔伯特矢量空间的介绍i。式符号II。 矩阵形式2的操作员 量子信息章节前奏:量子测量b。 简介c。产品状态d。纠缠状态e。矩阵形式f。 Bloch球G。基本大门h。 Pauli&Hadamard运营商i。克利福德门 更多逻辑门k。受控的保利,控制的哈达玛德和受控的toffoli大门。贝尔的不平等。 Grover的算法。基本的公钥分布o。 基本量子传送3。 隧道 简介b。通过单个障碍i。派生II。 宽障碍c。通过单个矩形屏障d进行隧道时间d。隧道虽然是双屏障谐振隧道结构i。谐振隧道二极管 - 定性讨论e。 Breit-Wigner公式f。穿过多个障碍4。 量子点,井和纳米线:变量a的分离。 使用有效的质量方程式b进行变量分离的简介b。量子点c。量子井波函数的正常函数III。叠加原理和量子测量IV。平均值 /期望值e。不确定性关系f。概率密度和表达概率电流密度g的连续性方程。希尔伯特空间h。对3D真实空间向量的简要回忆(评论)i。简要回忆傅立叶扩展(评论)j。希尔伯特矢量空间的介绍i。式符号II。矩阵形式2的操作员量子信息章节前奏:量子测量b。简介c。产品状态d。纠缠状态e。矩阵形式f。 Bloch球G。基本大门h。 Pauli&Hadamard运营商i。克利福德门更多逻辑门k。受控的保利,控制的哈达玛德和受控的toffoli大门。贝尔的不平等。 Grover的算法。基本的公钥分布o。基本量子传送3。隧道简介b。通过单个障碍i。派生II。宽障碍c。通过单个矩形屏障d进行隧道时间d。隧道虽然是双屏障谐振隧道结构i。谐振隧道二极管 - 定性讨论e。 Breit-Wigner公式f。穿过多个障碍4。量子点,井和纳米线:变量a的分离。使用有效的质量方程式b进行变量分离的简介b。量子点c。量子井
1 IBM 欧洲研究中心,瑞士苏黎世 2 苏黎世联邦理工学院生物系统科学与工程系,瑞士苏黎世 3 IBM 阿尔马登研究中心,美国加利福尼亚州圣何塞 4 视觉放射学,美国德克萨斯州达拉斯 5 犹他大学健康科学中心放射学和影像科学系,美国犹他州盐湖城 6 塞顿医学中心放射学系,美国加利福尼亚州戴利城 7 阿苏塔医学中心放射学系,以色列特拉维夫 8 本·古里安大学医学院,以色列贝尔谢巴 9 耶路撒冷希伯来大学医学院哈达萨-希伯来大学医学中心放射学系,以色列耶路撒冷 10 盖伊和圣托马斯 NHS 基金会皇家布罗姆普顿和哈里菲尔德医院,英国伦敦 11 切尔西和威斯敏斯特医院,英国伦敦 12 伦敦帝国理工学院国家心肺研究所,英国伦敦 13 布鲁内尔大学健康、医学与生命科学学院伦敦,英国伦敦 14 IBM 海法研究中心,以色列海法 15 耶路撒冷希伯来大学医学院,以色列耶路撒冷 *通信地址:jab@zurich.ibm.com (JB),beymer@us.ibm.com (DB) https://doi.org/10.1016/j.patter.2021.100269
贡献者(按字母顺序排列)Dr Aizuniza binti Abdullah、Dr Aminah Bee binti Mohd Kassim、Dr Arunah Chandran、Dr Asma' binti Ahmad Khalid、Dr Chai Phing Tze、Fatimah Zurina、Dr Jamiatul Aida Md. Sani博士,Jasmin Binti Mohamed Arif,Jenarun Jelip博士,Karen Sharmini Sandanasamy博士,Majdah Binti Mohamed博士,Mastura Binti Mohd Mohd Tahir博士,Mohd Hanif Bin Zailani博士,诺伦·本·穆罕默德(Norlen bin Mohamed)博士,诺里·阿卜杜勒·贾巴尔(Norli Abdul Jabbar)博士,努尔·纳兹利纳·伯蒂·莫赫(Nur Nazlina Binti Mohd Hanipah),努尔·沙哈达·贝蒂·扎卡里亚(Nur Shahadah binti Zakaria),努罗尔·扎卡里亚(Nurul Zaiza),拉哈尤·贝特(Rahayu binti) Umar,Siti Aisyah Binti Ismail博士,Siti Noraida Binti Jamal博士,Thilaka Chinnayah博士,Uma A/P Ponnudurai博士,Voon Kok How,Zakiah Binti Mohd博士说。
a Department of Genetics, The Life Sciences Institute, The Hebrew University, Jerusalem, Israel b SpliSense Therapeutics, Jerusalem, Givat Ram, Israel c Institut Necker Enfants Malades, INSERM U1151 Université de Paris, Faculté de Médecine Necker, Paris, France d Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama在伯明翰,伯明翰,伯明翰,美利坚合众国E埃默里大学,埃默里大学,亚特兰大,佐治亚州亚特兰大,美利坚合众国,小儿肺部和睡眠单位,儿科部,哈达萨·希伯鲁大学医学中心,耶路撒冷,耶路撒冷,以色列G中心,以色列G分子医学,澳大利亚梅尔多克大学,澳大利亚,澳大利亚,澳大利亚,澳大利亚,梅尔多克大学 University of Western Australia, Nedlands, Western Australia, Australia i Hadassah-Hebrew University Medical Center, Department of Pediatrics and Cystic Fibrosis Center, Jerusalem, Israel j Cystic Fibrosis Center, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France k Université de Paris, France l European Reference Network Lung
1 法国里尔大学里尔临床医学院、LIRIC、INSERM U995,里尔,法国;2 法国马赛马赛临床研究中心、INSERM CBT-1409,保利-卡尔梅特与生物疗法模块研究所,3 德国法兰克福大学儿童医院儿童及青少年诊所,4 波兰华沙医科大学血液学、肿瘤学和内科系,5 德国法兰克福歌德大学和德国红十字血液服务中心输血医学和免疫血液学研究所,6 意大利米兰圣拉斐尔生命健康大学、IRCCS Ospedale San Raffaele,7 德国雷根斯堡雷根斯堡大学医院儿科血液学、肿瘤学和干细胞移植系; 8 西班牙马德里普埃尔塔德耶罗马哈达洪达大学医院;9 德国维尔茨堡维尔茨堡大学第二医科和综合医院;10 荷兰阿姆斯特丹大学医学中心、阿姆斯特丹癌症中心和 LYMMCARE 血液学系;11 德国莱比锡大学弗劳恩霍夫细胞治疗和免疫学研究所 (IZI) 和临床免疫学研究所以及汉诺威医学院细胞治疗研究所;
摘要本研究探讨了遗传算法在生成高度非线性取代盒(S-boxE)中用于对称密钥密码学中的应用。我们提出了一种新颖的实现,将遗传算法与沃尔什 - 哈达玛德频谱(WHS)成本函数相结合,以产生8x8 s盒,非线性为104。我们的方法通过最著名的方法实现了绩效均衡,平均需要49,399次迭代,成功率为100%。这项研究表明,该领域中早期的遗传算法实现的显着改善,从数量级降低了迭代计数。通过通过不同的算法方法实现等效性能,我们的工作扩展了可用于密码学家的工具包,并突出了加密原始生成中遗传方法的潜力。遗传算法的适应性和并行化潜力提出了有望在S-box生成中进行研究的有希望的途径,有可能导致更强大,有效和创新的加密系统。我们的发现有助于对称密钥密码学的持续发展,从而提供了优化安全通信系统关键组件的新观点。关键字1 S-box生成,遗传算法,非线性取代,Walsh-Hadamard Spectrum,加密原语,启发式优化,加密强度1.简介
绘制 La Bajada 收缩和 Cochiti Pueblo 地区电阻率随深度的变化图;这些电阻率变化与岩石或沉积物类型的变化有关,而这些变化又会影响研究区域的含水层。在 Cerros del Rio 火山场东部,Cerrillos 隆起北部边界的位置和几何形状受到我们电磁勘测结果的限制。该边界定义了 La Bajada 收缩的东南范围,与 Rio Grande 水力相连的地下水从 Española 盆地流入 Santo Domingo 盆地时流经该边界。该地区的电磁勘测还发现了大部分隐蔽的 Tetilla 断层带;它似乎形成了东倾导电 Mancos 页岩块的西部边界。在 La Bajada 收缩的中北部,大片低电阻率区域与 Santa Fe 群上部盆地填充沉积物中的粉砂或粘土湖泊单元相吻合。在收缩的中央部分,较高的电阻率部分与祖先的里奥格兰德轴向砾石沉积物相对应。在拉巴哈达收缩的西侧,我们的电磁勘测结果对基底的相对位置以及收缩边界帕哈里托断层带两侧的古生代、中生代和第三纪沉积岩的厚度提供了约束。
Review Article Saudi Consensus on Medical Nutrition Therapy for Type 2 Diabetes Mellitus Abdulrahman Alsheikh 1 , Mahmoud M. A. Abulmeaty 2 , Abdulaziz Alothman 3 , Nahla Bawazeer 4 , Ossama Hamdy 5 , Saud Alsifri 6 , Emad R. Issak 7* 1 King Abdulaziz University Hospital, Jeddah, Saudi Arabia 2临床营养计划,临床营养科,社区健康科学系,应用医学科学学院,沙特国王大学,利雅得,沙特阿拉伯,沙特阿拉伯3沙特阿拉伯临床营养学会,沙特阿拉伯4号临床营养学会,4 4号,阿拉伯4号健康科学系,卫生与康复学院,卫生与康复科学学院,nourah bint bint bint bint bint bint bint bint bint abd abdi abdulria abtia abdulria abtia abd abdulria corsip.美国大波士顿,乔斯林糖尿病中心6阿尔哈达武装部队医院,沙特阿拉伯塔伊夫7内科医学系,埃及,埃及,阿恩·沙姆斯大学,艾因·沙姆斯大学:10.36348:10.36348/sjm.2023.v08ii12.001 |收到:24.10.2023 |接受:01.12.2023 |发布:05.12.2023 *通讯作者:Emad R. Issak内科部,Ain Shams大学,开罗,埃及,