前糖尿病。此阶段代表异常的葡萄糖代谢状态,属于正常葡萄糖对糖尿病的耐受性[3]。从糖尿病前期到糖尿病的年度过渡率预计约为5-10%[3]。非常重要的是,预测表明,到2030年,受糖尿病前期影响的个人人数将达到近4.7亿[3]。研究结果表明,糖尿病前期可能导致各种并发症,包括心血管疾病(CVD),糖尿病性视网膜病,神经病和肾脏病[4-7]。糖尿病前和糖尿病的发生率上升给医疗体系,家庭和整个社会带来了重大的经济负担。因此,对糖尿病前和糖尿病的危险因素的早期鉴定和减轻危害对于有效预防和减轻疾病负担很重要。
USask 的临时人工智能 (AI) 原则和指南 i USask 的 AI 原则旨在确保以支持 USask 的使命、愿景、价值观和战略目标的方式合乎道德、有效和负责任地使用 AI,并维护所有利益相关者的信任和信心。这些原则和指南旨在指导我们提供、支持和使用 AI 工具开展研究、教学、管理和支持服务。重要的是,当 AI 成为研究或教学的主题时(例如,关于 AI 的研究或教学),其中一些原则和指南可能不适用。这些活动被视为通过其他大学政策和实践以及学术自由的权利和义务进行管理。USask 坚持包括合议和包容性 ii 在内的核心价值观。重要的是,我们的流程包括研究人工智能 (AI) 使用教育特定原则的有影响力的例子,包括《北京人工智能与教育共识》 iii 和世界经济论坛的《教育人工智能七项原则》 iv 。这些框架要么以联合国教科文组织的《人本主义人工智能十大核心原则》为基础,要么以此为参考。以这些国际范例为参考点,萨斯喀彻温大学人工智能原则是通过一个强大而反复的过程制定的,该过程涉及来自我们校园各地的社区成员。萨斯喀彻温大学的人工智能原则和实践对于萨斯喀彻温大学的人工智能使用具有包容性、响应性和有效性。我们将继续采取持续响应的方式,以不断发展的人工智能原则和指导方针——考虑大学社区的反馈和人工智能技术的进步——以确保人工智能的使用保持有效、相关,并与我们大学不断变化的需求和价值观保持一致。随着萨斯喀彻温大学社区成员得到支持,将他们的人工智能实践与这些原则和指导方针保持一致,将培养一种负责任和道德的人工智能文化。萨斯喀彻温大学将接受我们作为人工智能使用方面的批评者和社会良知的角色,将公开其人工智能使用的原则和指导方针,并随着原则和指导方针的不断发展及时提供更新。重要的是,这些原则代表了我们在快速变化的环境中使用人工智能的愿望。道德和负责任的使用 1. 负责任。人类有意的选择和行动引领着我们对人工智能的使用,而人工智能
摘要:4D打印的出现已成为在生物医学应用(例如组织工程和再生医学)中产生复杂结构的关键工具。本章概述了该领域的当前状态及其巨大的潜力,以更好地理解所涉及的技术以建立复杂的4D打印结构。这些结构具有感知和响应各种刺激的能力,其中包括温度,湿度或电力/磁化剂的变化。首先,我们描述了4D打印技术,其中包括基于挤出的喷墨打印,以及基于光的基于液滴的方法,包括选择性激光烧结(SLS)。还提出了几种用于4D打印的生物材料,随着时间的流逝,它们可能会在各种外部刺激中发生结构变化。这些结构具有革新需要适应能力和智能材料的领域的希望。此外,突出了4D打印智能结构的生物医学应用,涵盖了从药物输送到再生医学的各种预期应用。最后,我们解决了与当前技术相关的许多挑战,涉及技术的道德和监管方面,以及在体外以及在体外以及4D打印结构的体内测试中都需要标准化方案,这是针对最终临床实现的重要步骤。
参考:Liu Q,Huang R,Hsieh J等。景观分析人工智能和机器学习在2016年至2021年的药物开发中的应用中。Clin Pharmacol Ther。2023; 113(4):771-774。 doi:10.1002/cpt.2668
摘要 - 能量有效的建筑物是那些使用设计过程中采取的措施减少能量,满足可再生能源所需的能量,并通过使用最有效的能量产生最小的环境影响。在这项研究的范围内,选择了节能建筑物,因为它们强调了设计,构造和使用阶段的环境敏感性。该研究旨在通过算法图形程序分析敏感量,并根据应用技术对其进行分类。该研究基于书面资源,互联网数据库和照片。视觉效果和示例用于提供详细信息。在节能建筑设计中,响应式皮肤算法应用技术在短时间内提供了最佳的能源,并为国民经济做出了巨大贡献。
以提高代谢稳定性和实时监测药物位置。基于多糖的纳米前药由于其成分清晰、结构准确、载药量稳定、抗肿瘤活性高而受到广泛关注。14,15壳聚糖(CS)是一种天然无毒的高分子材料,具有良好的生物降解性和生物相容性,被广泛应用于抗肿瘤药物的递送,用于癌症的诊断和治疗。16,17此外,CS具有大量的氨基(-NH 2)和羟基(-OH),是极好的功能化修饰位点。18如果将疏水性抗癌药物通过共价键直接偶联到亲水性聚合物链上,可以大大防止药物过早释放。然而,以壳聚糖为基础形成的阳离子纳米粒子不仅缺乏肿瘤靶向作用,而且易受血清蛋白介导的聚集和消除。19 透明质酸具有天然电负性,可用于包覆阳离子基纳米粒子。同时,透明质酸由于其低免疫原性,高生物相容性以及靶向肿瘤特异性表达受体(簇决定簇44,CD44)而被用于药物递送系统。20 因此,HA功能化的药物递送系统可以主动靶向癌细胞。21,22
摘要。带有碳存储和收获(冲突)的气候响应性土地分配模型是一种全球生物物理土地使用模型,可以嵌入到整体评估模型(IAMS)中。冲突代表着蔬菜的生长,陆地碳库存以及农业和林业的生产,用于改变气候下的不同土地用途。将冲突与IAM联系起来将允许在全球气候政策分析中考虑陆地碳库存,农业和林业。所有陆地生态系统及其碳动态均以粗分辨率进行全面描述。特别强调代表世界森林。植被生长,土壤碳储备,农业产量和自然干扰频率对气候状况的变化反应,从而模仿动态的全球植被模型LPJ-Guess。土地分为10个生物群体,其中有六个土地使用类别(包括森林和农业类别)。次生森林是年龄结构化的。森林收获的时机会影响森林的库存,因此,可以通过森林管理来增加每个森林区域的碳存储。除了森林森林外,冲突还包括主要的生态系统,农田和牧场。全面包含所有土地使用类别及其主要功能,允许代表全球土地利用竞争。在本文中,我们介绍,校准和验证模型;证明其使用;并讨论如何将其集成到IAMS中。
聚合物被认为是天然或合成起源的一类材料,由大分子组成,大分子是所谓的简单化学单元的倍数。这些不同的元素是药物输送应用的骨干,在组织工程,生物传感器,成像设备,化妆品等生物医学领域具有巨大的适用性。天然聚合物,例如蛋白质(例如,明胶),多糖(例如淀粉纤维素,壳聚糖)和核酸作为生物系统中的基本成分存在,并且由于其合适的质量而被广泛使用,包括生物降解性,生物降低性,生物兼容性和非毒性[1]。它们的合成对应物是制造/设计的,不仅可以模拟这些生物聚合物,还可以通过各种功能组的附件修改它们,并结合两个聚合物以满足当今的需求。这些聚合物包括均聚物,块/统计共聚物,移植共聚物(包括在表面上/从表面上移植)和分子刷[2]。当今,聚合物在各个领域的适用性面临着挑战,这增加了对敏感和高效系统的需求。在这种情况下,对聚合系统的巨大需求不仅可以增强灵敏度,还可以最大程度地减少副作用[3]。在各种天然和合成
多种视力威胁性的视网膜疾病,影响了全球数亿人,由于眼屏障和常见的药物输送限制,缺乏有效的药理治疗。聚合物纳米颗粒(PNP)是多功能药物载体,具有持续的药物释放曲线和可调的物理化学特性,已针对眼部和后眼组织探索了眼部药物。PNP可以纳入各种药物,并克服常规视网膜药物递送的挑战。此外,可以设计PNP来应对特定刺激,例如紫外线,可见光或近红外光,并允许对药物释放的精确时空控制,从而实现量身定制的治疗方案并减少所需的施用量。这项研究的目的是强调光触发的药物载荷聚合物纳米颗粒的治疗潜力,以通过探索眼球PA的疾病,药物输送挑战,当前的生产方法和最新应用来治疗视网膜疾病。尽管面临挑战,但响应式PNP仍然有望大大增强眼部疾病的治疗景观,旨在改善患者的生活质量。
哺乳动物的心脏再生能力有限,而斑马鱼具有非凡的再生。在斑马鱼心脏再生期间,内皮细胞可促进心肌细胞周期再入和肌肌的修复,但是负责促进损伤微环境有助于再生的机制仍未完全定义。在这里,我们将基质金属蛋白酶MMP14B识别为心脏再生的主管调节剂。我们确定了斑马鱼和小鼠心脏损伤引起的TEAD依赖性MMP14B内皮增强子,我们表明增强子是再生所必需的,这支持了MMP14B上游的河马信号的作用。最后,我们表明,小鼠中的MMP-14功能对于Agrin的积累很重要,Agrin是新生小鼠心脏再生的基本调节剂。这些发现揭示了促进心脏再生的细胞外基质重塑的机制。