老挝人民民主共和国已将 2024 年担任东盟主席国的主题定为“东盟:加强连通性和复原力”。在这一主题下,能源安全仍然是东盟的一项关键优先事项,支持该地区包容性和可持续的经济增长。东盟国家是《巴黎协定》的缔约方,承诺按照各国的国家自主贡献 (NDC) 减少全球温室气体排放 (GHG)。为了在本世纪中叶实现碳中和目标,各国必须寻求替代燃料途径,从基于化石燃料的能源系统转向更清洁的能源系统。多种脱碳途径至关重要。在鼓励投资可持续能源系统和能源安全的政策和措施中,能源效率和节约被认为是抑制能源消耗和减少二氧化碳排放的唾手可得的成果。
老挝人民民主共和国已将 2024 年担任东盟主席国的主题定为“东盟:加强连通性和复原力”。在这一主题下,能源安全仍然是东盟的一项关键优先事项,支持该地区包容性和可持续的经济增长。东盟国家是《巴黎协定》的缔约方,承诺按照各国的国家自主贡献 (NDC) 减少全球温室气体排放 (GHG)。为了在本世纪中叶实现碳中和目标,各国必须寻求替代燃料途径,从基于化石燃料的能源系统转向更清洁的能源系统。多种脱碳途径至关重要。在鼓励投资可持续能源系统和能源安全的政策和措施中,能源效率和节约被认为是抑制能源消耗和减少二氧化碳排放的唾手可得的成果。
老挝人民民主共和国已将 2024 年担任东盟主席国的主题定为“东盟:加强连通性和复原力”。在这一主题下,能源安全仍然是东盟的一项关键优先事项,支持该地区包容性和可持续的经济增长。东盟国家是《巴黎协定》的缔约方,承诺按照各国的国家自主贡献 (NDC) 减少全球温室气体排放 (GHG)。为了在本世纪中叶实现碳中和目标,各国必须寻求替代燃料途径,从基于化石燃料的能源系统转向更清洁的能源系统。多种脱碳途径至关重要。在鼓励投资可持续能源系统和能源安全的政策和措施中,能源效率和节约被认为是抑制能源消耗和减少二氧化碳排放的唾手可得的成果。
自史前时代以来,人类就依赖植物作为食物和药物。即使在现代药物唾手可得的国家,替代疗法仍然受到高度重视并被广泛使用。与现代药物不同,许多植物药尽管缺乏来自受控临床试验的安全性和有效性数据,并且作用机制通常不明确,但仍被广泛使用。造成这种情况的原因是许多植物药的成分复杂且不明确,作用机制可能涉及多个因素,并且靶点多种多样。在这里,我们回顾了普遍存在的电压门控钾通道 KCNQ 亚家族作为植物药靶点的新发现的重要性,包括罗勒、刺山柑、芫荽、薰衣草、茴香、洋甘菊、生姜以及山茶、槐树和野桐属植物。我们讨论了这些植物对癫痫、高血压和糖尿病等疾病的传统用途的影响,以及植物次生代谢物对 KCNQ 通道影响的分子机制。
尽管零售业对劳动力市场意义重大,但其生产率几乎在所有地方都远低于制造业和其他服务业。随着 ICT、物流和供应链管理技术(由美国沃尔玛等公司率先采用)在各个公司和国家得到普及,零售业的劳动生产率在 1995 年至 2006 年间确实大幅提高。到 2000 年代中期,这些数字和物流革命的“唾手可得的果实”已基本枯竭。2008 年后,由于全球经济危机导致需求下降,零售额出现下滑。从 2013 年开始,经济复苏使雇主越来越多地使用廉价劳动力,而不是继续投资于节省劳动力的技术。因此,由于经济条件不利以及企业不愿进行大规模资本投资,前段时间开发的提高生产率的技术(如自助结账)并未得到充分利用。与此同时,劳动力成本低廉和持续的工资停滞导致自动化导致的人员大规模重新部署到低附加值工作岗位(例如从收银员到接待和迎宾)——拖累了该行业的整体生产率增长。2
第六条机制与京都议定书机制的一个根本区别是,根据《巴黎协定》,所有国家都有减排承诺,而《京都议定书》中只有工业化国家才有量化的减排承诺。《巴黎协定》要求缔约方避免对减排成果进行重复计算,方法是将任何转移的减排成果的“相应调整”(CA)应用于其报告的排放量或用于跟踪国家自主贡献(NDC)进展的其他指标。根据第六条,潜在转移国的主要担忧是,由于“过度销售”减排量,参与合作方式可能会损害其实现国家自主贡献。这也不符合获得国的利益,因为对风险的认知可能会降低转移国进行贸易和承诺相应调整的意愿。本报告的目的是提出解决一个重要过度销售风险的方案:销售低成本的减排成果(MO),如果剩余的减排机会变得过于昂贵(销售“唾手可得的果实”),这可能会损害国家自主贡献的实现。
执行摘要 2.1 外赫布里底群岛一直是英国燃料贫困率最高的地区之一,高能源价格加剧了这种情况。虽然岛上正在生产的和即将生产的可再生能源电力的数量可能表明解决方案唾手可得,但不幸的是,由于当地电网的特性,这些当地生产的电力无法直接供应给当地家庭和企业。 2.2 一旦大规模可再生电力生产开始,从 2030 年开始,当地非营利能源供应公司可能会从岛上发电机采购电力,并以折扣价将这些电力零售给岛上消费者。报告中更详细地探讨了这一概念。 2.3 在获得足够数量的可再生电力之前(2030 年),Comhairle 及其合作伙伴将继续采取一系列措施,以减轻高燃料价格的影响并降低岛上的燃料贫困水平。 2.4 在英国创新署“快速跟随者”项目的外部资金支持下,我们针对本报告中概述的一些机会委托了专家提供建议,这项工作的成果将在适当的时候向委员会报告。
异常检测是一个重要的课题,已在不同的研究领域和应用领域中得到深入研究。它通常涉及异常数据、不健康状态的检测和故障诊断,有助于保证工业系统的稳定性、安全性和经济性。随着智能工业和传感器系统的发展,大量数据变得唾手可得,但工业系统的异常检测面临着重大挑战。一个典型的例子是对能源相关系统的研究,如热能、可再生能源(如风能、光伏)、电动汽车等。这些系统涉及各种数据格式和更复杂的数据结构,使异常数据检测成为一项挑战。目前,在深度学习和大数据分析的发展下,能源系统异常数据检测已经取得了许多有希望的成果。然而,由于能源行业的复杂性,许多具有挑战性的问题仍未解决。能源系统异常检测的新技术和高级工程应用仍然吸引着广泛的学者和行业。本研究专题的目的是征集有关异常检测技术的最新发展和能源相关系统应用进展的论文。该主题可以涵盖与异常检测算法开发相关的技术,例如机器学习、数据挖掘、深度学习、图论、大数据等。可以涉及能源应用的各个方面,例如数据清理、能源系统的不健康评估、状态监测和能源相关行业中的故障诊断。特别关注与能源相关的系统,例如风能、光伏、热能、电动汽车 (EV) 开发等。经过论文研究主题和严格审查,327 位作者提交的 63 篇高质量文章最终被接受,以表彰他们为电力系统、可再生能源系统和其他工业系统的状态监测和异常检测研究所做的贡献。在基于变分模态分解和随机森林的系列电弧故障诊断论文中,赵等人。提出了一种基于变分模态分解和能量熵的方法提取串联电弧故障的特征量,进而完成故障检测。在论文《通过结合在线机器学习和统计分析的数据驱动方法顺序检测微电网不良数据》中,黄等人提出了一种顺序检测方法来检测能源管理系统(EMS)中的不良数据。
基因编辑有望通过直接纠正致病变异来最终治愈遗传病。然而,首次临床试验追逐的是“唾手可得的果实”,使用的编辑策略依赖于基因破坏,即通过引入双链 DNA 断裂,导致 NHEJ 通路插入和删除 (indel)。由于 NHEJ 在整个细胞周期和默认 DNA 修复通路中都处于组成性活跃状态,因此与同源定向修复 (HDR) 相比,这是迄今为止最有效的传统基因编辑类型。HDR 依赖于外源修复模板的递送,并且该通路仅在细胞周期的 S 和 G2 期活跃。这两个参数对 HDR 的临床应用构成了挑战,因为外源 DNA 在大多数治疗相关细胞类型中都是有毒的,并且 NHEJ 和 HDR 之间的固有竞争可能成为瓶颈。然而,HDR 的优势在于能够对基因组进行精确编辑,从而代表真正的基因编辑,并可控制结果。尽管如此,在这两种方式中,DNA 断裂都被认为是潜在的基因毒性来源,因为存在脱靶编辑和染色体畸变(如易位和染色体碎裂)的可能性。依赖于 DNA 单链切口的下一代基因编辑工具(如 Base Editing 和 Prime Editing)降低了此类有害事件的风险,但它们可以生成的编辑范围仍然有限(Anzalone 等人,2020 年)。基于 CRISPR 相关转座酶或 CRISPR 指导的整合酶的最新类型的编辑器可以促进更大规模的编辑,但仍在开发中,尚不成熟,无法用于临床实施(Yarnall 等人,2022 年;Tou 等人,2023 年)。这个快速发展的工具箱有望扩大基于 CRISPR 的工具和其他位点特异性工程核酸酶在治疗人类疾病中的应用。然而,在实现精准基因校正的这一过程中,仍存在一些尚未解决的问题和挑战需要克服,其中一些问题我们希望通过基于 CRISPR 系统或其他工程化位点特异性核酸酶的治疗性基因校正策略这一研究课题来解决。本研究课题涵盖了一系列贡献,包括精准基因工程的重大科学进展以及专家对最新进展的看法。
1958 年至 1962 年间,美国和苏联在大气层中进行了数次核爆炸试验,其中包括 1962 年 7 月 9 日在约翰斯顿岛上空 400 公里高空发生的 1.4 百万吨爆炸的“星鱼一号”事件(Gombosi 等人,2017 年)。这些试验可视为太空主动实验(即故意扰乱当地环境的实验)的开端。它们展示了高空核爆炸的潜在破坏力,包括产生的电磁脉冲以及放射性裂变碎片可能产生的持久人造辐射带。例如,“星鱼一号”的意外后果之一是使至少七艘低地球轨道 (LEO) 航天器瘫痪,约占当时 LEO 航天器的三分之一(Gombosi 等人,2017 年)。大约在同一时间,范艾伦和他的团队对地球辐射带的根本性发现(Van Allen and Frank,1959 及其中的参考文献)表明了太空环境对航天器和宇航员来说有多么恶劣,以及我们对此知之甚少。在太空时代的推动下,积极的太空实验蓬勃发展,其目标是 (1) 探测基本的等离子体物理现象,(2) 阐明磁层和电离层物理的某些方面,以及 (3) 了解如何控制环境对太空资产的影响。炸弹、光束、加热器、释放、化学倾倒、等离子体羽流、系绳、天线、电压都是跨越数十年研究的积极实验的例子。六十年后,美国的积极太空实验计划发生了巨大变化。太空实验的数量急剧下降,取而代之的是研究强力发射器(如高频主动极光研究计划 (HAARP) 和阿雷西博的设施)引起的电离层加热和变化的地面实验。这种下降可以归因于几个原因,总结起来包括“唾手可得的果实”已经被收获,今天人们对太空环境有了更多的了解,太空飞行变得更加官僚化和风险规避,以及预算压力(Delzanno 和 Borovsky,2018 年)。然而,有许多理由对太空主动实验的未来感到乐观。新的科学和国家安全驱动因素要求进行新的主动太空实验。一个例子涉及磁层-电离层耦合,其中高功率电子束可用于磁场线测绘,并将遥远磁层中发生的现象与其在电离层中的图像联系起来(国家研究委员会,2012 年)。另一个例子涉及辐射带修复,通过在太空中注入电磁等离子体波,可以大大减少高空核爆炸产生的人造辐射带的通量,从而保护关键的太空资产。此外,还有新的成熟技术(超材料、致密相对论