摘要。在自然环境中具有综合性运作的情境意识到的人工药物面临着几个挑战:空间意识,对象效果检测,动态变化和不可预测性。一个关键的挑战是代理商识别和监视与其目标有关的环境要素的能力。我们的研究介绍了一种用于反应性机器人技术的神经符号模块化体系结构。我们的系统结合了在环境和图像处理技术(如光流)上执行对象识别的神经组件,以及符号表示和推理。通过将图像示意性知识整合在本体论结构中,推理系统基于体现认知范式的基础。该本体可用于创建有关感知系统的查询,决定符合的问题,并推断从感知数据中得出的实体功能。推理和图像处理的组合允许代理对正常操作的看法,并发现针对特定相互作用中涉及的对象的一部分的新概念。发现的概念允许机器人自主获取培训数据并只是其符号的感知来识别零件,并通过将搜索重点放在这些相关对象的零件上,从而为更复杂的任务进行计划。我们在模拟世界中演示了我们的方法,在模拟世界中,代理商学会了识别涉及支持关系的对象的一部分。虽然代理商最初没有概念,但通过观察从钩子上悬挂的支持对象的示例,但它学会了认识到建立支持所涉及的部分并能够计划支持关系的建立/破坏。这可以通过系统的方式通过观察来扩展其知识的能力,并说明了将深层推理与动态设置中的反应性机器人技术相结合的潜力。
• YSpace Digital:为学生、教师和企业提供虚拟支持和编程的在线社区,从创意到市场就绪阶段。 • YSpace ELLA:安大略省首个专注于女性主导的产品和服务型企业的加速器。 • YSpace Markham:位于约克地区的实体孵化器,支持成长型科技企业。 • 食品和饮料资源门户:食品和饮料行业分销商、制造商和合作伙伴的开放数据库。 • 黑人企业家联盟:与 Black Creek 社区健康中心合作,提供农业食品、技术和商业领导力培训和资源。 • IP Osgoode:奥斯古德霍尔法学院内涉及知识产权法研究、政策制定和研究的项目。 • Schulich Startups:舒立克商学院内支持舒立克社区成员创业活动的部门。 • Bergeron 科学与技术企业家 (BEST) 实验室:拉松德工程学院内支持工程研究人员创业活动的部门,包括技术开发的物理空间。 • BEST 跨学科技术创业证书:该证书将技术、法律和商业融入创造性解决问题和创新中;旨在教授、推广、关注和认可学生的创业技能和知识。 • 创业发展协会 (EDA):约克大学各个院系的学生管理团队,将学生与从业者和资源联系起来,以加强他们的创业想法并探索创业作为职业。 • 健康学院的变革推动者:提供指导和资金,以支持创新的学生主导的社区计划,这些计划旨在解决联合国可持续发展小组 (UNSDG) 的问题。 • 创新约克创业计划:为期六个月的计划面向继续教育学院的学生和应届毕业生。
Znamenka Capital a a btract中的Quant Dev负责人我们引入了一种新的方法,即在我们的代理商学会在限制顺序书籍中对“量子”的“量子”事件做出反应的高频交易申请,称为量子增强学习 - 单限制订单订单更新和单个交易(如果通过Exchange提供,则可以选择单订单)。我们声称,这种学习水平的粒度使我们的代理商可以通过在线微观结构的在线建模以最高的速度和精度来找到最佳的交易策略。k eywords深钢筋学习,高频交易1。troduction在高频交易的建模中有2种主要方法 - 传统的统计方法,例如市场微观结构建模和更近期的机器学习方法,检测到“在线”的微观结构模型,而无需在限制顺序书籍数据中对各种分布进行统计模型。机器学习模型在较高的频率上获得了动态性质,因为在此类交易频率上静态统计建模更加困难。机器学习方法可以进一步分为两个主要组 - 监督预测模型和无监督的强化学习模型。监督模型试图根据某些历史记录在此类峰值之前的限制订单事件中预测短期价格峰值,并由价格历史记录的主管手动标记,并向模型呈现进一步学习的模型 - 通常在每个tick上做出3个决定 - 购买,购买,出售或保持不正确。这种预测模型的概括能力不佳,可以推广到看不见的市场数据。另一方面,无监督的强化学习模型允许代理商首先随机行动,但随后纠正自己试图最大化最终PNL来自主学习交易策略。这种方法即使在强烈的随机市场环境中也倾向于更好地概括。通常可以将RL视为一种优化方法,有许多研究论文,研究了如何将RL应用于算法交易。RL在交易中的申请可以按以下组进行分类:
gerri c。 Drexel的Lebow Hall,营销博士生Hongjun Ye定居在计算机前,并推出了《 Overwatch》,这是一种流行的在线多人视频游戏。在接下来的几分钟中,她通过在未来派世界中试图躲在红色宝塔的石柱后面时捍卫敌人的机器人的有效载荷。“我喜欢玩电子游戏”,允许Ye,他是《守望先锋》以及其他FI的射击游戏(例如Counter-Trike和Borderlands)的粉丝。,但由于博士学位的要求,这远远超过了停机时间。Lebow的行为实验室内的游戏玩法是一项涉及的尖端神经科学研究项目的干旱奔跑,该项目涉及Comcast Nbcuniversal与Drexel签约以设计,开发和进行行为的军事退伍军人。“我真的很喜欢基于行业的项目,”您在比赛中休息时说。“学生不能仅仅在实验室中进行实验,并谈论纯理论的一切。它必须与现实世界建立联系。”研究员阿德里安·科廷(Adrian Curtin)同意。“您考虑了影响,”博士后说,他因其对非侵入性神经影像学的研究兴趣吸引了该项目。“很多时候,当您处理研究时,您都专注于知识:我想发现这是如何工作的,因为我想知道它是如何工作的……与私人公司一起工作会给您带来不同的观点,这是一种思考的不同方式。”你们补充说:“这是一个绝佳的机会。”这是一个可能永远不会发生的机会,但是对于Drexel Solutions Institute中的Drexel中存在着独特的回复。该研究所在将行业合作伙伴与大学的学术研究企业联系起来中扮演了媒人角色。大约几年前作为Lebow商学院内的Drexel Business Solutions Institute组成,它在2019年范围内扮演了整个大学的角色,并以其名义脱颖而出。现在,三人组是公司,非专业TS和政府实体的门户,可与Drexel教职员工和顶级学生合作,并从事量身定制的订婚,从目标研究到共同设计的策划级别的求职者到量身定制的劳动力培训。项目费用通常从10,000美元到200,000美元不等,以支付教师的时间和项目管理费用。
机器学习模型是自动化任务的强大工具,使其更加准确和高效。这些模型可以按需求处理新的数据并扩展新的数据,从而提供有价值的见解,以提高随着时间的推移绩效。该技术具有许多好处,包括更快的处理,增强的决策和专业服务。机器学习模型是在看不见的数据集中识别模式以做出决定的软件程序。自然语言处理(NLP)使用机器学习模型来分析非结构化文本并提取可用的数据和见解。图像识别是机器学习的另一种应用,它可以识别人,动物或车辆等物体。机器学习模型需要一个数据集来培训和在优化过程中使用算法,以查找数据的模式或输出。基于数据和学习目标有四种主要类型的机器学习模型:1。**监督模型**:这些模型使用标记的数据来发现输入特征和目标结果之间的关系。2。**分类**:这种类型的模型将类标签分配给看不见的数据点,例如对电子邮件进行分类或预测贷款申请人的信誉。常见分类算法包括: *逻辑回归 *支持向量机(SVM) *决策树 *随机森林 * K-Nearest邻居(KNN)预测使用输入功能作为基础的连续输出变量预测连续输出变量在现实世界中至关重要,例如预测房地产价格,股票市场趋势,股票市场趋势,客户销售速率,销售速度和销售费用和销售。常见回归算法包括:1。回归模型利用这些功能来了解连续变量和输出值之间的关系。他们应用了学习的模式来预测新的数据点。**线性回归**:使用直线建模关系。2。**多项式回归**:使用更复杂的函数(例如二次或立方)用于非线性数据。3。**决策树回归**:一种基于决策树的算法,可预测分支决策的连续输出。4。**随机森林回归**:结合了多个决策树,以确保准确稳健的回归预测。5。**支持向量回归(SVR)**:调整支持向量机概念的回归任务,找到一个密切反映连续输出数据的单个超平面。无标记数据的无监督学习交易。它涉及使用聚类算法进行分组类似的数据点,例如:1。** K-均值聚类**:基于相似性将数据分组为预定群体。2。**分层聚类**:构建群集的层次结构,以轻松研究组系统。3。** DBSCAN(基于密度的空间群集使用噪声)**:即使在缺少数据或异常值的区域,也可以检测高密度数据点。降低维度在处理大型数据集时也至关重要。它降低了维度以维护关键功能,从而更容易可视化和分析数据。技术包括:1。2。** PCA(主要组件分析)**:通过将数据集中在更少的维度中来识别最重要的维度。** LDA(线性判别分析)**:类似于PCA,但专为分类任务而设计。最后,也可以应用无监督的学习来检测异常 - 数据与大多数的点大不相同。在数据分析中对异常值,半监督学习和强化学习的建模得到了奖励,并受到所需的行动的奖励,并对不希望的行为进行惩罚有助于玩家获得最高的回报。这种方法还涉及基于价值的学习,其中像机器人一样的代理商学会了通过获得达到末端并在撞墙时损失时间来浏览迷宫的过程。算法Q学习可以预测每个州行动组合的未来奖励,从而通过重复评估和奖励更新其知识。基于策略的学习采用了不同的途径,重点是直接学习映射到行动的政策。Actor-Critic将策略更新与价值功能再培训结合在一起,而近端策略优化解决了早期基于政策的方法中的高变化问题。深度学习利用人工神经网络识别复杂的模式。诸如人工神经网络(ANN),卷积神经网络(CNN)和经常性神经网络(RNN)之类的模型用于图像识别,自然语言处理和顺序数据分析等任务。机器学习模型利用各种功能来输入数据并产生预测,包括线性方程,决策树或复杂的神经网络。学习算法是负责在训练过程中适应模型参数以最小化预测错误的核心部分。培训数据包括输入功能和相应的输出标签(监督学习)或无标记的数据(无监督学习)。目标函数衡量预测和实际结果之间的差异,目的是最大程度地减少此功能。优化过程,例如梯度下降,迭代调整参数以减少错误。一旦受过培训,就会在单独的验证集上评估模型,以评估概括性能。最终输出涉及将训练有素的模型应用于新的输入数据以进行预测或决策。高级机器学习模型包括神经网络,这些神经网络成功地解决了复杂问题,例如图像识别和自然语言处理。卷积神经网络(CNNS)处理符号数据,例如图像,而复发性神经网络(RNN)处理顺序数据(如文本)。长期短期内存网络(LSTMS)识别长期相关性,而生成对抗网络(GAN)通过从现有数据集中学习模式生成新数据。机器学习模型随着时间的流逝而发展,产生了两个网络:一个产生网络数据,另一个区分真实样本和假样品。变压器模型通过随着时间的推移处理输入数据并捕获长期依赖性,从而在自然语言处理中获得了知名度。*医疗保健:机器学习预测疾病,建议治疗并提供预后。机器学习的现实应用程序包括: *金融服务:银行使用智能算法来了解客户的投资偏好,加快贷款批准并检测异常交易。例如,医生可以为患者预测正确的冷药。*制造业:机器学习通过提高效率和确保质量来优化生产过程。*商业领域:ML模型分析大型数据集,以预测趋势,了解营销系统并为目标客户定制产品。机器学习中的挑战包括: *有限的资源和工具,用于上下文化大数据集 *需要更新和重新启动模型以了解新的数据模式 *收集和汇总不同技术版本之间的数据以应对这些挑战,战略规划,适当的资源分配以及技术进步至关重要。