摘要:尽管该领域取得了开创性的进展,但由于药物过早释放到血液中以及生物分布不良,药物安全性和有效性仍然是一个问题。为了克服这些限制,我们报告了基于动态共价键的药物环化,以设计小分子抗癌药物喜树碱 (CPT) 的双重锁定。药物活性被氧化还原响应的二硫化物和 pH 响应的硼酸-水杨基羟肟酸酯“锁定”在环状结构中,并且仅在酸性 pH、活性氧和谷胱甘肽存在下通过无痕释放开启。值得注意的是,双重响应的 CPT 比不可裂解(永久闭合)类似物活性更高(100 倍)。我们进一步在主链中加入了生物正交手柄,用于功能化生成环状锁定、细胞靶向的肽和蛋白质 CPT,用于药物的靶向递送和在三阴性转移性乳腺癌细胞中的无痕释放,以在低纳摩尔浓度下抑制细胞生长。
伊立替康 (IRT) 是选择性拓扑异构酶 1 (Topo1) 抑制剂之一,包括喜树碱、拓扑替康、伊达比星、柔红霉素、阿霉素和依托泊苷。Topo1 是一种酶,可通过诱导暂时的单链断裂来减轻 DNA 中的扭转应变。伊立替康是一种 Topo1 抑制剂,可防止这些断裂重新连接,从而导致 DNA 损伤并最终诱导癌细胞凋亡。这种机制强调了 IRT 在癌症治疗中的治疗效果,特别是在针对快速增殖的细胞方面。尽管 IRT 在 1994 年至 2008 年的约 15 年间是治疗结肠癌的最重要药物之一,但它的医疗用途至今仍在继续 (4)。伊立替康通过其活性代谢物激活 p53 导致人类 HCC 细胞凋亡。伊立替康通过改变基因表达诱导癌细胞凋亡。参与该过程的关键基因包括 p53、BAX/BCL-2、caspases 和 NF- κ B。IRT 对基因表达的影响促进细胞死亡并抑制肿瘤生长。
测序和转录组学的进步使得通过共表达分析可以发现酶,其中候选基因通过组织表达模式与已知途径酶的相似性来识别 — — 最近在 C.roseus 和 Podophyllumpeltatum 中的发现证明了这一点 [ 4 , 5 ]。自组织映射等机器学习方法进一步优化了候选基因 [ 6 ]。这些方法,加上对植物体内生物合成定位的更深入理解,以及单细胞代谢组学等技术的发展,进一步改善了候选基因的选择,加速了酶的发现 [ 7 ]。借助基于 OMIC 的工具(如 plantiSMASH)识别物理基因簇有助于阐明缺失的生物合成酶,如那可丁和长春花碱途径中的酶 [ 8–10 ]。然而,这种方法是有限的,因为许多植物生物合成途径几乎没有或没有基因聚集,如喜树碱生物合成途径[11]。基于同源性的克隆可以加速发现与已知生物合成酶具有直系同源功能的基因,例如在 Tabernanthe iboga 的 ibogaine 生物合成途径中鉴定出 C. roseus 脱羧酶直系同源物[12]。然而,途径的复杂性往往需要采用组合方法,例如 Gelsemiumsempervirens 氧化吲哚途径的发现[13]。
摘要:伊立替康(CPT-11)的活性代谢物7-乙基-10-羟基喜树碱(SN38)的活性比CPT-11高100-1000倍,对多种癌细胞均有抑制作用,包括直肠癌、小细胞肺癌、乳腺癌、食道癌、子宫癌和卵巢癌等。尽管SN38具有强效的抗癌特性,但其疏水性和pH不稳定性导致其副作用较大、抗癌活性丧失,难以在临床上使用。针对上述问题,构建基于SN38的药物递送系统是提高药物溶解度、增强药物稳定性、提高药物靶向性、提高药物生物利用度、增强治疗效果、减少药物不良反应最可行的方法之一。因此,本文从药物递送系统的靶向机制出发,综述了SN38药物递送系统,包括聚合物胶束、脂质体纳米粒、聚合物纳米粒、蛋白质纳米粒、适体和配体靶向的偶联药物递送系统、抗体-药物偶联、磁靶向、光敏靶向、氧化还原敏感和多刺激响应药物递送系统以及共载药物递送系统。本综述的重点是基于纳米载体的SN38药物递送系统。我们希望为新型SN38药物的临床转化和应用提供参考。关键词:SN38,药物递送系统,癌症
卵巢癌是妇科最常见的恶性肿瘤,根据最新统计,卵巢癌占生殖道癌症的22.9%(1),约80%的卵巢癌患者确诊时已发展至中晚期,死亡率居妇科癌症第一位(2)。临床上,铂类药物(顺铂、卡铂、奥沙利铂、奈达铂等)联合紫杉醇是卵巢癌的一线化疗方案,但70%的患者在初次治疗后复发并对铂类药物产生耐药,这是患者死亡的主要原因(3)。对于铂类耐药且复发的卵巢癌患者,需要进行与铂类无交叉耐药的二线化疗,常用的药物包括坎普托沙(CPT-11),但该类药物疗效有限且副作用较大(4)。 CPT-11是喜树碱的半合成衍生物,是DNA拓扑异构酶I(Topo I)的选择性抑制剂。但CPT-11的疗效并不高,ten Bokkel Huinink等研究发现,CPT-11对复发性OC的总有效率仅为20%~25%(5)。Takeuchi等的Ⅱ期临床研究(6)对52例接受过化疗的OC患者使用CPT-11治疗,也发现有效率仅为23%。此外,CPT-11有明显的不良反应,如迟发性腹泻和中性粒细胞减少(7),超过40%的患者使用CPT-11后出现Ⅲ~Ⅳ度腹泻,78.7%的患者出现中性粒细胞减少,Ⅲ~Ⅳ度中性粒细胞减少的发生率高达48%(8)。由于严重的副作用,必须提前停止治疗或减少剂量(9),这是限制其剂量和有效性的关键因素之一。
摘要 结直肠癌 (CRC) 是全球第三大最常见的癌症类型,在癌症相关死亡人数中排名第二。就目前的治疗方法而言,尚未提出一种明确、安全且有效的 CRC 治疗方法。然而,新的药物输送系统在这一领域显示出良好的前景。基于两亲性环糊精的纳米载体是一种创新且有趣的制剂方法,可通过口服给药靶向结肠。在我们之前的研究中,旨在对结肠肿瘤进行口服化疗,并通过配方开发研究、粘蛋白相互作用、粘液渗透、细胞毒性和二维细胞培养中的渗透性,以及在早期和晚期结肠癌模型中的体内抗肿瘤和抗转移功效以及单剂量口服给药后的生物分布获得了有希望的结果。本研究旨在进一步阐明口服喜树碱 (CPT) 负载两亲性环糊精纳米粒子在局部治疗结直肠肿瘤方面的药物释放行为和在三维肿瘤模型中的功效,以预测不同纳米载体的体内功效。主要目的是在配方开发与体外阶段和动物研究之间架起一座桥梁。在这种情况下,CPT 负载的聚阳离子-β-环糊精纳米粒子分别导致小鼠和人类 CT26 和 HT29 结肠癌球体肿瘤细胞活力降低。此外,首次通过释放动力学模型对释放曲线(新型药物输送系统中关键质量参数之一)进行了数学研究。总体研究结果表明,通过带正电荷的聚-β-CD-C6 纳米粒子将抗癌药物(如 CPT)口服靶向至结肠肿瘤以实现局部和/或全身疗效的策略是一种很有前途的方法。
摘要背景:ROR2 是一种酪氨酸激酶受体,其表达在许多人类疾病中失调。在癌症中,ROR2 刺激增殖、存活、迁移和转移,并与更具侵袭性的肿瘤阶段相关。这项工作的目的是研究 ROR2 在黑色素瘤化学耐药性中的作用。方法:使用功能获得和丧失实验来研究 ROR2 在黑色素瘤中的生物学功能。使用结晶紫细胞毒性测定和膜联蛋白 V/碘化丙啶染色评估化疗药物和 BH-3 模拟物诱导的细胞死亡。使用蛋白质印迹法评估与细胞死亡有关的蛋白质的表达。使用 Student's t 检验和方差分析评估了操纵 ROR2 水平的细胞与对照细胞之间观察到的差异。结果:我们描述了 ROR2 通过增强黑色素瘤细胞对化疗药物和 BH-3 类似物的耐药性来促进肿瘤进展。我们证明 ROR2 在使用顺铂、达卡巴嗪、洛莫司汀、喜树碱、紫杉醇、ABT-737、TW-37 和维奈克拉治疗后减少了细胞死亡。这种影响是由抑制细胞凋亡介导的。此外,我们研究了与 ROR2 这一作用有关的分子机制。我们将 MDM2/p53 通路确定为 ROR2 的一个新靶点,因为 ROR2 正向调节 MDM2 水平,从而导致 p53 下调。我们还表明 ROR2 还会上调 Mcl-1 和 Bcl2-xL,同时负向调节 Bax 和 Bid 表达。ROR2 对这些蛋白质表达的影响是由 ERK 的过度激活介导的。结论:这些结果表明,ROR2 通过抑制细胞凋亡和增加化学耐药性促进黑色素瘤进展。这些结果不仅将 ROR2 定位为化学耐药性的标志物,而且还支持将其用作癌症的新治疗靶点。