摘要 纸基传感器上金属阳离子的电化学检测因其易于制造、一次性使用和成本低廉而被认为是当前光谱和色谱检测技术的一种有吸引力的替代方案。本文设计了一种新型炭黑 (CB)、二甲基乙二肟 (DMG) 墨水作为电极改性剂,与 3 电极喷墨打印纸基体结合使用,用于水样中镍阳离子的吸附溶出伏安电分析。在没有常用的有毒金属薄膜的情况下,所开发的方法提供了一种新颖、低成本、快速且便携的吸附溶出检测方法来进行金属分析。该研究展示了一种在纸基传感器上检测镍的新方法,并通过限制使用有毒金属薄膜,在纸基金属分析领域的先前工作的基础上取得了进展。首次通过增加活性表面积、电子转移动力学和与非导电二甲基乙二肟膜相关的催化效应,提高了器件的灵敏度,并通过电分析进行了确认。首次使用 CB-DMG 墨水可以在电极表面选择性预浓缩分析物,而无需使用有毒的汞或铋金属膜。与类似报道的纸基传感器相比,实现了检测限 (48 µg L -1 )、选择性和金属间干扰的改善。该方法用于检测水样中的镍,远低于世界卫生组织 (WHO) 标准。
近年来,银纳米颗粒电极因其稳定性和导电性而被广泛研究,作为可穿戴和柔性电子产品的电极材料。湿化学沉积技术被认为是一种低成本且可扩展的技术。目前基于湿化学的纳米颗粒沉积技术包括电喷雾沉积、滴铸法、旋涂法和喷墨打印工艺。这些技术通常需要单独的沉积后退火步骤。这对于低熔点的基底来说可能是一个问题。此外,上述某些方法需要物理接触,这增加了交叉污染的可能性。在本研究中,我们提出了一种结合电喷雾和激光辐射的技术,可以在刚性或柔性基底上同时沉积和烧结纳米颗粒。在此过程中,银纳米颗粒水相悬浮液的微滴以所谓的微滴模式从金属毛细管喷嘴喷出,喷嘴可通过电位控制。锥形空心激光束用于蒸发液体并将纳米颗粒烧结到基底上的所需位置。与传统的导电微图案制备方法相比,这项技术前景广阔,因为它简化了一步沉积过程,减少了交叉污染,并且适用于各种表面。我们利用功率为 5 至 13 W 的 Nd:YAG 激光器制备了银纳米颗粒薄膜微图案。我们利用扫描电子显微镜、能量色散 X 射线和四探针分析研究了晶粒尺寸分布、成分和电阻率之间的相关性。结果与传统的热烧结方法相当。
Organic electrochemical transistors (OECTs), [16,18–27] is currently one of the most studied organic electronic devices and is explored in various applications, such as in fully printed logic circuits, [16,26] active matrix addressed displays, [17] dis- play driver circuits, [19] sensors, [22,23,28–33] neuromorphics, [24] just仅举几例。可以使用不同的打印技术,例如丝网印刷,[19,21] 3D打印,[30]喷墨打印,[34]和其他流程来通过具有成本效益的协议来制造。[35,36]基于OECT的逻辑门和电路也进行了广泛的研究,[35,37-40],其中逆变器作为任何组合逻辑电路的基本组件都起着关键作用。通过采用基于OECT的逆变器[16,26,35]作为高级电路的基本组成部分,可以实现各种形式的基于OECT的数字电池[16,24,35]。在有机电子设备中,通过考虑针对目标的最终应用,在低电压和低功率下运行的电路是完全需要的。通过降低电路的操作电压率,可以最大程度地减少电压应变和降解风险。[16]然后,这允许长时间的操作寿命,与其他技术平台的简单集成以及与通信基础架构的连接。例如,在物联网(IoT)应用程序中,为了降低使用大量电子组件在紧凑型电路中使用大量电子组件的整体功耗,要求对单个逻辑组件的有效使用来扩展IoT生态系统。要意识到这样的电路,必须降低系统元件的操作电压水平。由于逆变器是逻辑电路的关键要素,因此最终电路的工作电压范围可以在很大程度上降低
Outlook:从化学的角度来看,需要在QD制造方面的进展来维持和改善所需的化学和光电特性,并具有高可重复性。这需要使用廉价的合成方法和能够将实验室规模QD属性保留到市场相关的体积的廉价合成方法。需要更好地理解QD表面,原子布置和元角色的尚未完整的图像,以推动进一步的进步。从监管的角度来看,需要增加注意力以获得不依赖重金属(例如CD,PB和HG)的高质量材料。纳米结构在每种应用中的毒性和生命周期分析中的作用越来越重要。从伴侣和光体物理学的角度来看,令人兴奋的机会在对电子高度密闭材料中电子的理解和利用中仍然存在,从而弥合了成熟的外观QD和仍在上升的胶体QD之间的差距。后者的尚未达到的质量(今天为易于制造而支付的价格)仍然是一个核心挑战,必须应对设备的进一步提高性能。从依据的角度来看,胶体QD制造必须提高到从实验室规模转换为大区域应用,例如滚动到滚动和喷墨印刷。光催化,其中使用光用于驱动化学转移,是一个新兴的QD感兴趣的领域。向前迈进,在启用了QD的新范围架构的设计中仍然存在机会。▪量子信息技术依赖于相干光和电子的转导,带来了新的挑战和机会来利用量子限制效应。
液滴撞击固体和液体表面是技术应用中遇到的各种现象的关键要素,例如喷墨打印、热表面的快速喷雾冷却(涡轮叶片、钢铁生产轧机的轧辊、激光器、半导体芯片和电子设备)、铝合金和钢材的退火、淬火、洒水灭火、内燃机(汽油发动机的进气管或直喷式柴油发动机的活塞碗)、焚化炉、喷漆和涂层、等离子喷涂和农作物喷洒。结构材料的微加工、印刷电路板上的焊料凸块、通过精密焊料滴分配产生的微电子电路以及液体雾化和清洁以及电线和飞机上的冰积聚也涉及液滴撞击。后者在刑事取证、非润湿或完全润湿表面的开发、用微滴高精度地活化或钝化基质、将表面污染物输送到散装液体中以及气体截留中也发挥重要作用。理解伴随的物理现象对于在喷雾模拟的数值代码中制定可靠的边界条件至关重要。湖泊、海洋和海洋表面层的通气等大规模和普遍的自然现象都依赖于雨滴撞击引起的气泡夹带。这些在海洋表面的撞击导致向上的射流和二次液滴的形成,这些液滴蒸发并形成盐晶体。后者作为云的成核点,与气象学有关。土壤侵蚀、孢子和微生物的扩散以及降雨时的水下噪音是另外三种涉及雨滴撞击的自然现象。雨水落在水坑和池塘上时,钉状的射流和气泡是一种常见的景象。
激光引伸计 P-50 和 P-100 用于非接触式测量单轴载荷下试样的应变或压缩。由于其高精度,它们特别适用于低应变材料,如金属、陶瓷、混凝土或复合材料。激光的平行光束路径使其能够通过温控设备的窗口进行应用,特别适合在环境室和高温炉中测量。试验前,在试样上做至少两个测量标记。这可以通过胶带(快速法)、永久性标记、喷墨打印(能很好地跟踪试样变形)或喷枪来完成。喷枪例如含有二氧化钛,特别推荐用于高达 2,000 °C 的气候室或熔炉中的较高试验温度。激光引伸计用可见激光束扫描测量范围并自动确定参考长度。在整个实验过程中,都会记录测量标记的位置。根据型号,平行扫描仪的精度等级为 1;根据 DIN EN ISO 9513,为 0.5 和 0.2。0.1 µm 或 0.25 µm 的分辨率可在整个测量范围内进行精确测量。由于波长和平行激光束路径,激光引伸计极不敏感,即使实验过程中工作距离有微小偏差也是如此。该测量系统可以最佳地集成到 Hegewald & Peschke 的测试系统中。工作原理:激光束照射到旋转的平行平面玻璃板上。这会导致激光平行偏转:当它进入和离开板时,光束在板的两个相对表面上发生折射,从而产生相等的折射角。通过旋转平行平面板,激光
化学传感和热量管理都代表着主要技术,可以在可穿戴设备中进行远程医疗保健,这在大流行社会中非常重要。石墨烯和相关的2D材料(GRM)具有可穿戴电子产品的新型电气和热性能的巨大潜力。特别是基于GRM的溶液的纳米结构GRM膜(图1A)的低温产生和沉积对于印刷柔性和可穿戴电子产品极为有吸引力。[1,2]已经开发了来自具有不同电子性能的2D材料的电子油墨来打印设备的不同元素:活性层中的半导体或半金属油墨,用于介电墨水的磁铁和用于电极的墨水[3,4]。单层六角硼硝酸硼(H-BN)是一种宽带2D半导体,具有出色的声子传输[5],这是用于热导电糊的有前途的聚合物填充剂。[6]在本次演讲中,我将描述表面活性剂和无溶剂和无溶剂喷墨印刷的薄膜薄膜设备的电荷传输机制,这些薄膜的薄膜设备(半金属),二钼钼(MOS 2,半导体,半导体)和钛金属MXEN(TI 3 C 2,METATIENT)的电气依赖性和磁场依赖于温度和磁场,并将其用于温度和磁场。[7]印刷几层MXENE和MOS 2设备中的电荷传输由组成薄片的固有运输机理主导。另一方面,印刷的几层石墨烯设备中的电荷传输主要由不同薄片之间的传输机构主导。[8][7]然后,我将讨论H-BN和Ti 3 C 2的纳米结构膜中的热传输,并报告与Wiedmann-Franz Law背道而驰,为在有效冷却电子电路和OptoelectRonic设备中的电气冷却和智能管理式智能处理和热量管理和智能处理中的电气和热导电涂料铺平了道路。
摘要 大型 3D 曲面电子产品是微电子行业的一种趋势,因为它们具有与复杂表面共存的独特能力,同时保留了 2D 平面集成电路技术的电子功能。然而,这些曲面电子产品对制造工艺提出了巨大挑战。在这里,我们提出了一种可重构、无掩模、保形制造策略,采用类似机器人的系统,称为机器人化“转移和喷射”打印,以在复杂表面上组装各种电子设备。这种新方法是一项突破性的进步,具有在复杂表面上集成刚性芯片、柔性电子产品和保形电路的独特能力。至关重要的是,包括转移印刷、喷墨打印和等离子处理在内的每个过程都是无掩模、数字化和可编程的。机器人化技术,包括测量、表面重建和定位以及路径编程,突破了 2D 平面微加工在几何形状和尺寸方面的根本限制。转移打印首先用激光从供体基板上剥离刚性芯片或柔性电子元件,然后通过灵巧的机器人手掌将其转移到曲面上。然后,机器人电流体动力打印直接在曲面上书写亚微米结构。它们的排列组合实现了多功能保形微加工。最后,利用机器人混合打印成功地在球形表面上制造了保形加热器和天线,在有翼模型上制造了柔性智能传感皮肤,其中组装了曲面电路、柔性电容和压电传感器阵列以及刚性数模转换芯片。机器人混合打印是一种创新的打印技术,可实现 3D 曲面电子产品的增材、非接触和数字化微加工。
过去十年。尤其是,光线和灵活设备的开发将代表该领域的重大突破,因为它允许新的检测器设计和应用程序,例如,便携式实时X射线测量器或弯曲的数字X射线成像仪。[1] Exposure to high doses of X-rays increases the risks of developing radiation-induced disorders such as can- cers [2] and enhancing the detection limit of detectors is a critical key issue for medical application, since it would help reducing the radiation dose delivered to the patient and therefore limit the radiation hazards linked to radiation therapy and diagnostics (e.g., mammography, X-ray tomography).上面引用的规格要求开发可处理的X射线直接检测材料与柔性塑料底物上的低温沉积兼容,并能够以低辐射剂量工作。不过,由于机械刚度低和高X射线吸收的双重必要性,所有这些要求都无法轻易满足单个材料,因此通常通过浓稠且沉重的吸收层来实现后者。的确,参与直接X射线检测的传统最先进材料包括硅(SI),无定形硒(α-SE)和锌锌锌醇锌(CZT)(CZT),它们因其高原子数(z)和密度而以其高X射线停止功率而闻名。柔性应用受到塑料基材及其机械刚度的高加工温度输入的阻碍。带有构图的3D ho最近,有机半导体似乎是直接X射线检测的传统无机半导体的有希望的替代品。[3,4]有机半导体具有吸引人的特性,尤其是通过基于大区域溶液的技术进行处理的可能性,例如钢筋涂层[5]或喷墨印刷[6]在柔性基板上。有机材料的低z然而,限制了其停止功率,从而限制了低辐射剂量以高能X射线的检测。机械刚性和大型X射线吸收之间的权衡是应对新型X射线检测材料的开发的有趣挑战。在过去的几年中,关于直接X射线检测材料的研究主要围绕混合有机/盐酸卤化物钙钛矿(HOIP)围绕。
T.-M. Băjenescu,tmbajenesco@gmail.com 收稿日期:2019 年 2 月 8 日 接受日期:2019 年 3 月 15 日 摘要。如今,灵活性意味着生产价格合理、质量上乘的定制产品,并能快速交付给客户。本文分析了与物理相关的问题,这些问题能够产生缺陷,影响 MEMS(微机电系统)的可靠性极限。无论 MEMS 行业的未来前景多么美好,它目前所处的位置都比表面上看起来要脆弱得多。要研究纳米器件的最终可靠性极限,需要全面了解缺陷产生的物理和统计数据。最大的挑战:成本效益高、大批量生产。关键词:工艺误差,MEMS,光学MEMS,故障分析,MEMS开关,封装开裂,故障机制,可靠性,蠕变,寿命预测。1.简介 在开发先进的MEMS封装时,必须注意和理解以下几点:MEMS器件和MEMS封装的基础设施尚未完善;MEMS封装专业知识并不普遍;MEMS封装是独一无二的和定制的;MEMS通用封装平台技术尚不可用;MEMS器件需要密封;某些MEMS器件甚至需要真空封装;采用硅通孔(TSV)的垂直电馈通成本仍然太高。封装经常被称为“MEMS制造的致命弱点”,是MEMS商业化过程中的一个关键瓶颈。除了少数完全商业化的产品(即气囊触发器、喷墨打印头、压力传感器和一些医疗设备)外,封装是成本的最大单一因素,也是小型化潜力的主要限制因素 [1]。除非完全封装,否则 MEMS 产品是不完整的。目前,封装是导致 MEMS 产品开发时间长和成本高的主要技术障碍之一。封装涉及将:(a) 各种组成部分的大量设计几何形状整合在一起;(b) 连接不同的材料;(c) 提供所需的输入/输出连接,以及 (d) 优化所有这些以获得性能、成本和可靠性。