摘要:添加剂制造是使用CAD数据逐层构建组件的术语;它也称为分层制造或3D打印。添加剂制造的主要优点是不使用模具或工具的建筑组件的能力。AM过程的五个主要类别包括粉末床融合(PBF),直接能量沉积(DED),材料喷射(MJ),粘合剂喷射(BJ)和板层压板(SL)。传感器可以定义为响应物理刺激并传输产生的脉冲的设备。传感器技术已在高级制造,航空航天,生物医学和机器人应用中广泛采用。常用的传感器是温度传感器,应变传感器,生物传感器,环境传感器和可穿戴传感器等。添加剂制造技术可以用较少的人工制造传感器和微流体设备。本文着重于增材制造过程开发的各种传感器,并审查了它们在特定目的的实际应用。
1.1 目前市面上有些气雾剂产品(例如空气清新剂、缓蚀剂、除臭剂、杀虫剂、润滑剂、泡沫定型剂及雪雾剂等)含有石油气与其他化学品的混合物。石油气经加压后变成液态,然后储存于气雾罐内作为喷射剂使用。市民在保管及使用这些气雾剂产品时,应注意气体安全。 1.2 本指引为在本港出售的载有石油气的气雾罐(下称“气雾罐”)的安全标准提供指引。本指引不适用于以非石油气气体作为喷射剂的气雾罐,例如压缩二氧化碳、二甲醚等。 1.3 本指引并不包括有关气雾罐内除石油气以外的其他内容物的安全规定。供应商必须确保遵守所有其他相关安全标准及其他本地法定要求。1.4 本指引亦可在 www.emsd.gov.hk 查阅。
摘要:压电执行器具有响应速度快、结构紧凑、精度高、产生巨大阻挡力以及操作简便等特点,在先进分配领域中正被迫切地采用,以提高喷射性能并满足微电子封装、胶粘剂键合和小型化行业的精度要求。本研究重点是一种压电驱动的紧凑型流体分配器的基础设计和开发,该分配器利用一级杠杆的原理来放大针头位移,并扩大所开发的喷射分配器的应用领域。利用基本杠杆原理,进行基于几何的建模,以制造一种常闭铰链杠杆式分配器的工作原型。进行了初步实验,以见证所制造的分配器每秒输送 100 个工作流体点的可行性,这将提供一种分配各种流体的新型装置,并且所提出的放大机制也适用于各种其他压电应用。
与之前的粉末床熔融技术 (PBF) 不同,该技术不使用单点激光来固化粉末,而是将粘合剂材料喷射打印在模型顶部所需的表面上。这对生产尤其有影响,因为与 PBF 相比,它可以大幅提高打印速度。
3.1.1 验收数 验收数是允许验收批次的样品中缺陷或缺陷单元的最大数量。 3.1.2 粘合剂 在粘合剂喷射过程中用于将金属颗粒粘合在一起的液体粘合剂或胶水。 3.1.3 括号内资格 请参见 ASME BPVC,第 IX 节 - 焊接、钎焊和熔接资格 3.1.4 构建 请参见 ISO/ASTM 52900 中的“构建周期”。 3.1.5 协议 由制造商和购买者商定。 3.1.6 合格证书 包含添加剂制造商声明的文件,证明组件符合本标准的要求。 3.1.7 清洁剂 在粘合剂喷射过程中使用的液体清洁剂,以保持打印头喷射的质量(去除多余的粘合剂)。 3.1.8 组件构建文件 定义将由一台打印设备构建的组件、测试样本和支撑结构(如适用)的几何形状和排列的文件。该文件将被转换为构建说明。3.1.9 最终条件
许多病毒通过病毒壳中的纳米通道弹出,这是由高密度基因组堆积产生的内力驱动的。DNA出口的速度受限制分子迁移率的摩擦力控制,但这种摩擦的性质尚不清楚。我们引入了一种方法,通过用光学镊子测量噬菌体Phi29衣壳的DNA出口来探测紧密限制的DNA的迁移率。我们测量了极低的初始退出速度,速度指数增加的制度,主导动力学的随机暂停和较大的动态异质性。使用可变的力量测量提供了证据,表明初始速度由DNA-DNA滑动摩擦控制,这与纳米级摩擦的Frenkel-Kontorova模型一致。我们证实了理论模型预测的弹出动力学的几个方面。暂停的特征表明它与软性系统中“堵塞”的现象相连。我们的结果提供了证据表明DNA-DNA摩擦和堵塞控制DNA出口动力学,但这种摩擦并没有显着影响DNA包装。
摘要 许多增材制造 (AM) 技术依赖于粉末原料,粉末原料通过熔化或化学结合随后烧结形成最终部件。在这两种情况下,工艺稳定性和最终部件质量都取决于粉末颗粒和流体相(即熔融金属或液体粘合剂)之间的动态相互作用。本研究提出了一种通用的计算建模框架,用于模拟涉及热毛细管流和可逆相变的耦合微流体-粉末动力学问题。具体而言,液相和气相与由基材和移动粉末颗粒组成的固相相互作用,同时考虑温度相关的表面张力和润湿效应。在激光-金属相互作用的情况下,通过额外的机械和热界面通量来整合快速蒸发的影响。所有相域都使用光滑粒子流体动力学进行空间离散化。该方法的拉格朗日性质在由于相变和耦合的微流体-粉末动力学而动态变化的界面拓扑背景下是有益的。在制定相变时要特别小心,这对于计算方案的稳健性至关重要。虽然底层模型方程具有非常通用的性质,但所提出的框架特别适用于各种 AM 过程的中尺度建模。为此,通过几个应用驱动的示例证明了计算建模框架的通用性和稳健性,这些示例代表了特定的 AM 过程,即粘合剂喷射、材料喷射、定向能量沉积和粉末床熔合。除其他外,它还展示了粘合剂喷射中液滴的动态影响或粉末床熔合中蒸发引起的反冲压力如何导致粉末运动、粉末堆积结构的扭曲和粉末颗粒的喷射。
碳直接:“我们发现碳捕获和储存良好(CCS)是降低多个可持续航空燃料生产途径的碳强度的强大杠杆。例如,碳捕获和储存可以捕获酒精到喷射和Fischer-Tropsch途径的偏离,在某些情况下,从化石到常规生物燃料的初始转换中,导致气候益处更大。” - 碳直接
摘要 许多增材制造 (AM) 技术依赖于粉末原料,粉末原料通过熔化或化学结合随后烧结形成最终部件。在这两种情况下,工艺稳定性和最终部件质量都取决于粉末颗粒和流体相(即熔融金属或液体粘合剂)之间的动态相互作用。本研究提出了一种通用的计算建模框架,用于模拟涉及热毛细管流和可逆相变的耦合微流体-粉末动力学问题。具体而言,液相和气相与由基材和移动粉末颗粒组成的固相相互作用,同时考虑温度相关的表面张力和润湿效应。在激光-金属相互作用的情况下,通过额外的机械和热界面通量来整合快速蒸发的影响。所有相域都使用光滑粒子流体动力学进行空间离散化。该方法的拉格朗日性质在由于相变和耦合的微流体-粉末动力学而动态变化的界面拓扑背景下是有益的。在制定相变时要特别小心,这对于计算方案的稳健性至关重要。虽然底层模型方程具有非常通用的性质,但所提出的框架特别适用于各种 AM 过程的中尺度建模。为此,通过几个应用驱动的示例证明了计算建模框架的通用性和稳健性,这些示例代表了特定的 AM 过程,即粘合剂喷射、材料喷射、定向能量沉积和粉末床熔合。除其他外,它还展示了粘合剂喷射中液滴的动态影响或粉末床熔合中蒸发引起的反冲压力如何导致粉末运动、粉末堆积结构的扭曲和粉末颗粒的喷射。