Patricia Montoya是一位高级地球科学顾问,目前拥有22年以上的经验,目前是EM CO 2隔离项目和合作组织的全球MMV顾问。在2007年加入埃克森美孚(Exxonmobil)后,帕特里夏(Patricia)从事地球科学家的探索,开发,生产和研究业务支持角色。她以前的角色包括在Labarge的计划和执行新的CO 2喷油器井,Wyoming为1阶段CCS扩展项目。她的技术专长领域是结构地质,盐构造,深水地层学,开发和生产计划,运营执行,风险管理策略,缓解计划以及最近对CO 2 SequeTration实施适合危险风险的监控和监视计划。
挑战:预先燃烧器中的NOx排放和性能/可靠性问题增加现有的燃烧器排放/性能限制新的H 2燃烧器设计高H 2浓度我们的解决方案我们的解决方案:SWRI运行多个燃烧钻机,可以测试大量测试的大规模测试措施,并可以测试高度尺寸的测试措施,内部旋转的固定装置,内置的Indextor Indibord indimult Indimult Indimolt indimult Indimul组件开发 - 开发和测试原型注射器和燃烧器,包括开发添加性生产的喷油器 - 开发和测试微涡轮机原型 - 操作两个微涡轮测试钻机和P&W JT15D发动机测试台 - 20 bar Air Supperi
随着 1994 年废气排放标准越来越严格,需要更高的燃油喷射压力和更及时地将燃油输送到燃烧室。皮卡车领域的领导者福特使用了卡特彼勒开发的一种名为 HEUI(液压驱动、电子控制、单体喷射)的喷射系统。道奇/康明斯发动机使用了博世 P7100 直列式燃油泵。把它想象成一个微型直列六缸发动机,它的工作原理就很容易理解了。六个由泵凸轮轴驱动的柱塞泵通过六条高压燃油管路向喷油器发送燃油脉冲。压力打开喷油阀,让燃油进入燃烧室。使用博世 P7100 燃油泵时,燃油计量(怠速时为 85:1;满载时为 25:1)由燃油齿条和齿轮控制,这些齿轮转动计量螺旋,让燃油进入六个柱塞泵。
名称 类型和测试仪信号 方向 说明 加速踏板位置 (APP) 模拟输出 驾驶员脚踏板 气流 模拟/数字输出(取决于传感器类型) 测量进入发动机的空气质量 进气歧管压力 (IMP) 模拟输出 影响空气密度 进气歧管温度 (IMT) 模拟输出 影响空气密度 燃油压力 模拟输出 影响喷油器每次启动时分配的燃油 曲轴 模拟/数字输出(取决于传感器类型) 高速信号;旋转位置信息 凸轮 模拟/数字输出(取决于传感器类型) 高速信号;旋转位置信息 Lambda/O2 模拟输出 排气化学反馈 爆震 模拟输出 高速信号;气缸振动反馈 节气门位置 模拟输出 节气门体反馈 节气门指令 数字 PWM 输入 ECU 的节气门设定点
名称 类型和测试仪信号 方向 说明 加速踏板位置 (APP) 模拟输出 驾驶员脚踏板 气流 模拟/数字输出(取决于传感器类型) 测量进入发动机的空气质量 进气歧管压力 (IMP) 模拟输出 影响空气密度 进气歧管温度 (IMT) 模拟输出 影响空气密度 燃油压力 模拟输出 影响喷油器每次启动时分配的燃油 曲轴 模拟/数字输出(取决于传感器类型) 高速信号;旋转位置信息 凸轮 模拟/数字输出(取决于传感器类型) 高速信号;旋转位置信息 Lambda/O2 模拟输出 排气化学反馈 爆震 模拟输出 高速信号;气缸振动反馈 节气门位置 模拟输出 节气门体反馈 节气门指令 数字 PWM 输入 ECU 的节气门设定点
通常,样品可能包含来自样品矩阵的化合物,可以通过固定相保留。盐,脂质,增塑剂和聚合物是在分析过程中可能与固定相接触的一些可能物质。这些物质可能会对色谱柱,检测器产生有害影响,并在分析过程中引起瞬时峰。如果这些物质不被流动阶段洗脱,它们可以积聚在列上。随着时间的流逝,分析物可以与这些杂质相互作用并影响分离机制,从而导致保留时间移动和峰值尾巴。此外,这些积累的杂质会造成阻塞,从而导致柱面压力升高,损坏泵,并可能导致柱床中的空隙形成。强烈建议使用防护柱来避免此类问题。防护列是简短的列,包装包装与喷油器和分析列之间安装的分析列相似。在给定期间后,它们被丢弃,并安装了新鲜的防护柱,以最大化分析柱的寿命。
随着 1994 年废气排放标准越来越严格,需要更高的燃油喷射压力和更及时地将燃油输送到燃烧室。皮卡领域的领军企业福特使用了卡特彼勒开发的 HEUI(液压驱动、电子控制、单体喷射)喷射系统。道奇/康明斯发动机使用博世 P7100 直列式燃油泵。将其视为一个微型直列式六缸发动机,其工作原理就很容易理解了。由泵凸轮轴驱动的六个柱塞泵通过六条高压燃油管路向喷油器发送燃油脉冲。压力打开喷油阀,使燃油进入燃烧室。使用博世 P7100 燃油泵时,燃油计量(怠速时为 85:1;满载时为 25:1)由燃油齿条和齿轮控制,这些齿轮旋转计量螺旋,使燃油进入六个柱塞泵。
dlrs太空推进研究所拥有与火箭发动机推室设计方面相关的实验研究的长期遗产。由于欧洲的传统关注欧洲的LOX/氢气推进系统,例如沟渠,HM-7B或Vinci,因此科学焦点被放在LOX和氢气的高压燃烧现象上。感兴趣的科学领域包括点火和瞬态,燃烧效率和动力学以及喷油器设计,燃烧室冷却,喷嘴流以及推力室结构和疲劳寿命。在欧洲研发测试台P8上使用各种测试标本进行了与高压燃烧相关的实验,该试验具有在代表典型火箭发动机的条件下进行测试的可能性[3]。自2014年以来,DLR也在涡轮机械领域建立能力。基于这些现有能力和测试功能,DLR于2017年启动了Lumen Bread Engine项目,其主要目标是:促进对发动机流程的理解,以系统级别展示能够预测
5800 VDV ICP-OES配备了集成的高级开关阀(AVS 7),ADS 2 AutoDilutor和SPS 4 AutoSampler(图1)。AV和ADS 2系统无缝地工作以最大程度地提高样品吞吐量,增加样本周转时间并降低每样本成本。4 ADS 2在线自动化器用于促进自动,准确的校准标准和样品自动稀释,节省了分析师时间并减少实验室消耗品。但是,AD 2和AVS的集成设计避免在不执行稀释时增加过多的时间,从而解决其他稀释系统的常见缺点。SPS 4自动采样器用于将样品自动输送到仪器中。5800 ICP-OES配备了海洋喷雾剂,双通气旋喷雾室和带有1.8 mm内径(ID)喷油器的Agilent半位数VDV火炬。使用ICP Expert Pro软件*控制所有仪器*。
通常,样品可能包含来自样品矩阵的化合物,可以通过固定相保留。盐,脂质,增塑剂和聚合物是在分析过程中可能与固定相接触的一些可能物质。这些物质可能会对色谱柱,检测器产生有害影响,并在分析过程中引起瞬时峰。如果这些物质不被流动阶段洗脱,它们可以积聚在列上。随着时间的流逝,分析物可以与这些杂质相互作用并影响分离机制,从而导致保留时间移动和峰值尾巴。此外,这些积累的杂质会造成阻塞,从而导致柱面压力升高,损坏泵,并可能导致柱床中的空隙形成。强烈建议使用防护柱来避免此类问题。防护列是简短的列,包装包装与喷油器和分析列之间安装的分析列相似。在给定期间后,它们被丢弃,并安装了新鲜的防护柱,以最大化分析柱的寿命。