Pharma Innovation Journal 2023; 12(5):382-386 ISSN(E):2277-7695 ISSN(P):2349-8242 NAAS评级:5.23 TPI 2023; 12(5):382-386©2023 TPI www.thepharmajournal.com收到:20-02-2023接受:25-03-03-2023 Kavya诉土壤科学和农业化学系Keladi Shivappa shivappa shivappa shivappa shivappa shivappa nayaka shivappa nayaka nayaka University of农业和研究印度卡纳塔克邦,北卡纳塔克邦,Keladi Shivappa Nayaka农业与园艺科学的土壤科学和农业化学,贝拉迪·史瓦帕帕帕帕帕帕巴省农业和园艺科学系,印度科学科学和印度Shimoga,karnataka,karnataka ranata,karnataka,karnataka,karnataka ranta,karnataka,karnataka,kararata ranta,印度卡纳塔克邦莱彻尔农业科学大学农业化学,印度卡纳塔克邦:迪莱普R土壤科学与农业化学系,农业科学大学,科学大学,印度卡纳塔克邦雷克尔大学农业科学。
摘要:随着质谱成像 (MSI) 在药物研发中的应用越来越广泛,我们有机会开发出结合探索性高性能分析和更高容量、更快靶向 MSI 的分析流程。因此,为了实现更快的 MSI 数据采集,我们提出了利用三重四极杆 (TQ) 质谱分析仪的分析物靶向解吸电喷雾电离质谱成像 (DESI-MSI)。与传统的飞行时间 (TOF) 质谱分析仪相比,评估的平台配置提供了更高的灵敏度,因此有可能生成适用于药物研发的数据。该平台成功运行,采样率高达 10 次扫描/秒,与同类 DESI-TOF 设置上常用的 1 次扫描/秒相比具有优势。更高的扫描速率使得研究内源性脂质物种(如磷脂酰胆碱)和四种口服药物(厄洛替宁、莫西沙星、奥氮平和特非那定)的解吸/电离过程成为可能。这可用于了解解吸/电离过程的影响,从而优化操作参数,与 DESI-TOF 分析或基质辅助激光解吸/电离 (MALDI) 平台相比,提高了脑组织切片中奥氮平和主要奥氮平代谢物羟基奥氮平的化合物覆盖率。该方法可以减少记录信息量,从而将数据集的大小从每个实验高达 150 GB 减少到几百 MB。在案例研究中证明了该方法对绘制药物分布图、药物引起的肾毒性的空间分辨分析以及卵巢肿瘤标本的分子组织学组织分类的适用性,其性能得到了改善。
经济合作与发展组织 (OECD) 是一个政府间组织,由来自北美、南美、欧洲和亚太地区的 38 个工业化国家以及欧盟委员会的代表组成,他们开会协调和统一政策,讨论共同关心的问题,并共同应对国际问题。OECD 的大部分工作由 200 多个由成员国代表组成的专门委员会和工作组执行。来自 OECD 中几个具有特殊地位的国家以及相关国际组织的观察员出席了 OECD 的许多研讨会和其他会议。委员会和工作组由位于法国巴黎的 OECD 秘书处提供服务,该秘书处分为各司和各处。
摘要:小型农民和其他涂抹者使用杠杆操纵的背包,因为其多功能性,成本和设计。除了苦苦挣扎之外,缺乏压力控制是使用这些喷雾器的最大限制,因为它导致化学制备,不一致的喷雾图案和喷雾液滴尺寸的流量(剂量)可变,这所有这些都会影响喷雾覆盖范围和化学性能。人手不能保持稳定的抽水率。结果是化学物质的误入性和对靶病虫害的无效控制。这项研究发展了一种新的创新,该创新在恒定压力下运作,从而提供了除草剂的均匀沉积,从而可以更好地控制杂草,并提高了尼日利亚的农业生产力。通过丢弃手动操作的活塞和隔膜泵,它可以减少使用常规杠杆式旋转式喷雾器而遇到的繁琐的。匹配可充电电池的设计和安装和直流泵提议减少操作员的任务,以仅携带坦克并用任何一只手喷洒。由DC可充电电池供电的稳定抽水可确保持续的抽水压力和喷雾液滴沉积的均匀性。该项目以适当的技术提供依靠提高尼日利亚的农业生产力和粮食安全。旨在提供一台具有成本效益的机器,以有效地解决尼日利亚和其他发展中国家的作物保护。
良好的技术评估(TA)854(2022年12月14日)指出,具有选择性的5-羟色胺再摄取抑制剂(SSRI)或5-羟色胺 - 去甲肾上腺素再摄取抑制剂(SNRI)的鼻酮鼻喷雾剂(SSRI)在营销授权中不建议进行重复的倾向,至少在抑郁症的倾向下,至少不推荐使用5-羟甲肾上腺素抑制剂(SNRI)。成人发作。[1]
电喷雾离子束中发射物质的角度分布尚未得到很好的表征,并且会对推进性能和发射器寿命产生负面影响。我们使用飞行时间质谱法对单个电喷雾离子束中发射物质的角度分布与发射电压的关系进行了实验表征。角电流分布表明发射中心轴与发射器尖端中心轴的最大偏差为 10 ◦。离子物质随角度的变化取决于发射电压。单粒子轨迹的模拟表明,离子团簇的碎裂会导致离子产物移近光束中心,而中性产物扩散至 47 ◦,具体取决于碎裂发生的速度。将实验结果与电喷雾发射的多尺度全光束模拟进行了比较,并讨论了未来使用这些模拟来解释角光束行为。
电喷雾离子束中发射物质的角度分布尚未得到很好的表征,并且会对推进性能和发射器寿命产生负面影响。我们使用飞行时间质谱法对单个电喷雾离子束中发射物质的角度分布与发射电压的关系进行了实验表征。角电流分布表明发射中心轴与发射器尖端中心轴的最大偏差为 10 ◦。离子物质随角度的变化取决于发射电压。单粒子轨迹的模拟表明,离子团簇的碎裂会导致离子产物移近光束中心,而中性产物扩散至 47 ◦,具体取决于碎裂发生的速度。将实验结果与电喷雾发射的多尺度全光束模拟进行了比较,并讨论了未来使用这些模拟来解释角光束行为。
Sina Amoushahi,Anne Tremblay-Laforce和Jean Habimana Hatch,蒙特利尔,魁北克,加拿大,Alun Thomas All2plan咨询,哥本哈根,丹麦,摘要在隧道项目中使用喷雾式喷涂的防水膜(SAWM)在隧道中越来越受欢迎。 该技术对复杂的地下几何形状特别有吸引力。 但是,底物准备和安装需要良好的计划,严格的质量控制和丰富的经验。 在潮湿条件下锯齿的应用是具有挑战性的。 本文根据作者在加拿大魁北克近期备受瞩目的项目中的经验,对现代喷涂混凝土衬里(SCL)隧道中SAWM的构建挑战进行了回顾。 讨论了膜应用之前,之中和之后的施工要求,并引入了不同的产品,并详细阐述了每种产品的优缺点。 讨论了创新排水网的应用。Sina Amoushahi,Anne Tremblay-Laforce和Jean Habimana Hatch,蒙特利尔,魁北克,加拿大,Alun Thomas All2plan咨询,哥本哈根,丹麦,摘要在隧道项目中使用喷雾式喷涂的防水膜(SAWM)在隧道中越来越受欢迎。该技术对复杂的地下几何形状特别有吸引力。但是,底物准备和安装需要良好的计划,严格的质量控制和丰富的经验。在潮湿条件下锯齿的应用是具有挑战性的。本文根据作者在加拿大魁北克近期备受瞩目的项目中的经验,对现代喷涂混凝土衬里(SCL)隧道中SAWM的构建挑战进行了回顾。讨论了膜应用之前,之中和之后的施工要求,并引入了不同的产品,并详细阐述了每种产品的优缺点。讨论了创新排水网的应用。
lyptus globulus labill。喷雾剂为0.2至0.3%1-丙膦酸(NIA 10656)或注射8 mL 10%技术级NIA 10656的喷雾剂可使芽生长降低1年。乙基氢1-丙膦酸(EHPP,NIA 10637)显示出类似于NIA 10656的反应。 萘甲苯酸(NAA),EHPP,NIA 10656和Amonium carbamoylphopphopphonate(krenite)均显示在修剪切割时绘制时某些生长调节剂反应。 在沥青载体中施用的抑制剂比在水载体中的类似应用更有效。 应用6,羟基-3-(2H)吡idacinone(MH),三氟甲基磺氨基磺酰基-P-乙二醇二醇(持续),NaA和EHPP组合,或甲基2-氯-9-氯-9-氯二氟乙烯-9-羟基 - 9-甲基甲基甲基甲基甲基甲基甲基甲基二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基酸酯,含有甲基甲基甲基甲基酸酯,含有甲基甲基甲基酸酯,含有含量125)被测试为躯干树皮带,以减少末端芽增长。 维护CF 125产品用相等量的柴油稀释并施用乙基氢1-丙膦酸(EHPP,NIA 10637)显示出类似于NIA 10656的反应。萘甲苯酸(NAA),EHPP,NIA 10656和Amonium carbamoylphopphopphonate(krenite)均显示在修剪切割时绘制时某些生长调节剂反应。在沥青载体中施用的抑制剂比在水载体中的类似应用更有效。应用6,羟基-3-(2H)吡idacinone(MH),三氟甲基磺氨基磺酰基-P-乙二醇二醇(持续),NaA和EHPP组合,或甲基2-氯-9-氯-9-氯二氟乙烯-9-羟基 - 9-甲基甲基甲基甲基甲基甲基甲基甲基二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基酸酯,含有甲基甲基甲基甲基酸酯,含有甲基甲基甲基酸酯,含有含量125)被测试为躯干树皮带,以减少末端芽增长。维护CF 125产品用相等量的柴油稀释并施用
摘要:在生物材料的背景下,工程细菌的生物打印对于合成生物学的应用引起了极大的兴趣,但是到目前为止,只有少数可行的方法可用于打印托管活的Escherichia大肠菌细菌的凝胶。在这里,我们基于廉价的藻酸盐/琼脂糖墨水混合物开发了一种温和的基于挤出的生物打印方法,该方法将大肠杆菌打印到高达10毫米的三维水凝胶结构中。我们首先表征了凝胶墨水的流变特性,然后研究印刷结构内细菌的生长。我们表明,通过添加过氧化钙的产生系统,可以促进印刷结构内深处的荧光蛋白的成熟。然后,我们利用生物生产物来控制依赖于其空间位置的细菌之间不同类型的相互作用。我们接下来显示了基于群体感应的化学交流,在生物打印结构内部位于不同位置的工程发件人和接收器细菌之间,并最终证明了通过非损伤细菌定义的屏障结构的制造,可以指导凝胶内趋化细菌的运动。我们预计,3D生物打印和合成生物学方法的结合将导致含有工程细菌作为动态功能单元的生物材料的发展。关键词:合成生物学,细菌,生物材料,生物打印,细菌交流,趋化性