Milk-to-Drop 晒后身体喷雾含有 98% 的天然成分,让您的肌肤感到清爽舒缓,是晒伤皮肤的理想选择。使用这种可喷雾的乳液,它会在涂抹过程中转变成水滴,为您带来独特的体验。这种温和、轻盈的稀薄乳液通过极低的助乳化剂使用量来稳定,温和度极佳,与 PemuPur™* START 聚合物相结合,这种天然衍生的聚合物乳化剂可提供轻盈的感觉和快速破霜效果。AlgaPūr™* HSHO 藻油是一种生物技术油,由微藻的神奇力量制成,可将糖转化为 100% 天然的甘油三酯,这是一种可持续的发酵过程,对环境的影响非常小。AlgaPūr™* HSHO 藻油可提供保湿,使用后感觉柔软丝滑。 Schercemol™* CO 酯和 Schercemol™* 1818 酯均为天然轻质和中质酯,可增强肌肤的轻盈感和奢华柔软度。通过可持续 Phenobio™* 亚临界水技术获得的植物成分 Actismart™* SW 黄瓜和 Actismart™* SW 洋甘菊,可能有助于以自然的方式缓解皮肤状况。
一种流感疫苗是一种有助于阻止您从流感疾病的药物。它可以帮助停止将感染传播给他人。这是保护孩子免受流感的最佳方法之一。
摘要:即使使用最先进的技术,例如基因编辑,现代植物繁殖仍然是一个耗时且昂贵的过程。因此,迫切需要开发植物特质操纵和植物保护的替代方法。RNA干扰(RNAi)是一种由天然存在的双链RNA(DSRNA)和小RNA(SRNA)介导的保守细胞机制,可以靶向mRNA用于破坏或减少转录的mRNA。在这里,我们回顾了基于RNAi的技术的潜力,称为喷雾诱导的基因沉默(SIGS),是在植物或病原体控制中操纵内源基因表达的繁殖的替代或辅助。SIGs可能在减少害虫或病原体影响的情况下特别有用,从而改善生物胁迫并提高作物的农艺性能。关键字:RNA干扰,小RNA,SIGS,DSRNAS
在英国,将使用几种不同类型的Covid-19疫苗。在几个不同国家中,每种疫苗已经在成千上万的人中进行了测试。在被授权使用之前,已由药物和医疗保健产品监管机构(MHRA)仔细评估了其安全性和有效性。在英国,已有超过3400万人接种疫苗,这已经阻止了许多案件,而Covid-19造成了许多案件和一万多人死亡。MHRA不断根据医疗保健专业人员和公众报告的所有副作用,不断审查使用中的疫苗的安全性。最近有报道称,涉及血凝块和阿斯利康疫苗接种后的血凝块和异常出血的报道,正在仔细审查。由于Covid-19的并发症和死亡的高风险很高,MHRA,世界卫生组织和欧洲药品局得出结论,风险和利益的平衡非常有利于疫苗接种。有关COVID-19-19疫苗接种和血凝块的收益和风险的更多信息,请参见:PHW.NHS.Wales/PatientInfo。
HiSPEED 的目标是开发一种高效的推进系统,以便使用小型卫星进行深空探索。麻省理工学院空间推进实验室开发的离子电喷雾推进系统是首批提供紧凑高效推进系统之一,该系统与立方体卫星外形尺寸兼容。然而,现有的推进器头的寿命短于深空任务所需的发射时间。因此,我们考虑采用分阶段方法,将烧坏的推进器头弹出并更换,从而延长推进系统的整体寿命。
最新发现表明,真菌可以占据环境RNA,然后可以通过环境RNA干扰沉默真菌基因。这一发现促使开发用于植物疾病管理的喷雾诱导的基因沉默(SIGS)。在这项研究中,我们旨在确定在各种真核微生物中SIG的效率。我们首先检查了多种致病性和非致病真菌和卵形病原体中RNA摄取的效率。我们观察到了真菌植物病原体中有效的双链RNA(dsRNA)摄取,果仁酸酯,硬化菌核,根瘤菌索拉尼,索拉尼菌,尼日尔和佛罗里达州的黄瓜和佛罗里西亚果皮,但在浓度较弱真菌,Trichoderma Virens。对于卵植物病原体,植物疫霉菌,RNA吸收有限,并且在不同的细胞类型和发育阶段有所不同。靶向毒力相关基因的DSRNA局部应用在具有高RNA摄取效率的高效率的病原体中显着抑制了植物性疾病症状,而DSRNA在低RNA效率效率低的病原体中的应用不会抑制感染。我们的结果表明,在真核微生物物种和细胞类型之间,DSRNA摄取效率各不相同。SIG在植物性疾病管理方面的成功可以在很大程度上取决于病原体的RNA摄取效率。
基因组学和生物科学领域的进展已使微生物生物过程成为先进的化学品生产方式。虽然生物制造有潜力满足全球对可再生燃料和化学品的需求,但设计出能够与合成化学过程竞争的微生物细胞工厂仍然是一项挑战。优化菌株以提高化学品产量不再受限于读取和写入 DNA,而是受到缺乏高通量平台来表征特定基因编辑事件导致的代谢表型的阻碍。为了解决这个问题,我们开发了一种解吸电喷雾电离成像质谱 (DESI-IMS) 筛选检测方法,它有利于多路复用采样和非靶向分析。该技术通过在环境条件下快速直接地同时表征各种工程大肠杆菌菌株的化学输出,弥补了基因组和代谢组学时间尺度之间的差距。所开发的方法用于根据测量的代谢组对四种大肠杆菌菌株进行表型分析,并通过 PCR 基因分型对其进行验证。非靶向 DESI-IMS 表型分析表明,未来工程改造有多种策略,包括:(i) 特定生物合成产物的相对量、(ii) 次级产物的鉴定和 (iii) 工程改造生物的代谢组。总之,我们提出了一种工作流程,通过提供微生物代谢表型的快速、非靶向和多路复用分析来加速菌株工程改造。合成生物学 | 成像质谱 | 多重代谢组学 | DESI-IMS | 游离脂肪酸分析鉴于基因组和生物科学的重大进步,改造微生物用于可再生化学品制造变得越来越可行。作为传统化学合成的替代途径,生物合成生产大宗化学品有可能解决全球
Pearlbond™702 EXP适合用于挤出和粉末应用中,其中以下功能对客户具有很高的价值:低粘度下的高速过程,并且在几分钟内,在出色的润湿性中,在几分钟内具有高粘结强度。它也可以与更多刚性树脂或反应性系统结合使用,以提高柔韧性和弹性行为(化合物)降低其TG。材料制备以达到最佳效果,建议的干燥条件在70ºC时为3小时,在热空气循环,真空或干燥空气烘干机中。挤出
设计为一个简单,智能和方便的存储单元,以使DMT系统整洁,包括Jet3或M3,Power Harness和Blade。很容易安装在墙上,只需抓住,清洁并停靠即可。
设计为一个简单,智能和方便的存储单元,以使DMT系统整洁,包括Jet3或M3,Power Harness和Blade。很容易安装在墙上,只需抓住,清洁并停靠即可。