本文提出了一种设计噪声消除共栅 (CG) 低噪声放大器 (LNA) 的新方法。该方法研究使用电感退化共源 (IDCS) 级与 CG 级并联,而不是共源 (CS) 级。考虑到 IDCS LNA 的特殊规格,所提出的拓扑可以实现更低的噪声系数 (NF) 和更好的输入阻抗匹配。对该拓扑进行了分析计算,并给出了满足输入阻抗匹配和噪声消除条件的方程。还通过计算每个噪声源的传递函数来计算所提出的 LNA 的 NF,同时满足这些条件。为了验证理论分析,设计并优化了两个不同的 X 波段 LNA。使用先进设计系统 (ADS) 电磁动量和 GaAS pHEMT 0.1 µ m 工艺模型进行模拟。结果表明,所提出的方法可以实现更好的输入阻抗匹配和更低的 NF,而输出阻抗匹配和增益具有相对相同的行为。
𝜖 O3 = 𝑆 0P 𝑑𝐵−𝑁𝐹。(5)𝜖 O3 可视为初步评估 LNA 基本性能的定性参考,与接收器性能的潜在优势有关。图 1(a) 和 (b) 中的 LNA 分别显示 𝜖 O3 为 -0.3 dB 和 3.1 dB。这意味着,图 1(a) 中的 LNA 具有负 𝜖 O3(NF 高于增益),可能会损害整体接收器性能,并且从成本效益的角度来看,采用它可能是不合理的,因为这取决于接收器下一阶段的性能,甚至可能导致性能下降和功耗浪费。对于图 1(b) 中的 LNA,𝜖 O3 略微超过 3dB,这可以视为其在接收器中采用的初步定性要求。尽管噪声系数略有增加,但 MT 0 和 𝜖 O3 均支持具有 IIM 的共源共栅放大器对于 MPmCN 的优势。
摘要。本文提出了一种基于动态阈值 MOSFET (DTMOS) 的下变频吉尔伯特混频器,用于采用 UMC 180 nm CMOS 工艺的医疗植入通信服务 (MICS) 接收器设计。电流源辅助器和开关偏置技术用于提高基于 DTMOS 的吉尔伯特混频器的性能。所提出的设计在 403 MHz 的射频 (RF) 下工作,在 5 dBm 的 LO 功率下最大变频增益为 12.5 dB。所提出的设计的 1 dB 压缩点和三阶输入截点 (IIP3) 分别为 - 8.79 dBm 和 3.92 dBm,噪声系数 (NF) 在 10 MHz 中频 (IF) 下为 6.6 dB。该设计电路在 0.9 V 电源电压下工作,直流功耗为 0.55 mW,芯片面积为 0.035 9 0.037 mm 2。因此,这种具有高转换增益和更好噪声性能的设计是适合 MICS 应用的模块。
• FMCW 收发器 – 集成 PLL、发射器、接收器、基带和 ADC – 76GHz 至 81GHz 覆盖范围,可用带宽为 5GHz – 四个接收通道 – 三个发射通道 – 基于小数 N 分频 PLL 的超精确线性调频引擎 – TX 功率:13dBm – RX 噪声系数:13dB – 1MHz 时的相位噪声:• –96dBc/Hz(76GHz 至 77GHz)• –94dBc/Hz(77GHz 至 81GHz)• 内置校准和自检 – 内置固件 (ROM) – 跨工艺和温度的自校准系统• 主机接口 – 通过 SPI 或 I2C 接口与外部处理器进行控制接口 – 通过 MIPI D-PHY 和 CSI2 v1.1 与外部处理器进行数据接口 – 用于故障报告的中断• 符合功能安全标准 – 专为功能安全应用而开发 – 提供文档以帮助 ISO 26262 功能安全系统设计达到 ASIL-D – 硬件完整性达到 ASIL-B – 安全相关认证 • 经 TUV SUD 认证,达到 ISO 26262 ASIL B 级
摘要 — 本文报道了一种新型差分折叠混频器,该混频器采用多重反馈技术来提高性能。具体而言,我们引入了电容交叉耦合 (CCC) 共栅 (CG) 跨导级,通过提高有效跨导来改善低功耗下的噪声系数 (NF),同时通过抑制二阶谐波失真来提高线性度。通常,CCC 产生的环路增益会增加三阶互调 (IM3) 失真,从而降低输入参考三阶截点 (IIP3)。在这里,我们建议在 CCC CG 跨导器中加入正电容反馈和第二个电容反馈,不仅可以抑制 IM3 失真电流,还可以增加输入晶体管的设计灵活性。此外,正反馈还通过灵活的设计标准改善了输入阻抗匹配、转换增益和 NF。采用 0.13 µ m 工艺制作的原型机,所提出的混频器工作在 900 MHz,在 1 V 电压下功耗为 4 mW。测得的双边带 (DSB) NF 为 8.5 dB,转换增益 (GC) 为 18.4 dB,IIP3 为 + 12.5 dBm。
集成 12 位 DAC 和 ADC 的 RF 2 × 2 收发器 TX 频段:47 MHz 至 6.0 GHz RX 频段:70 MHz 至 6.0 GHz 支持 TDD 和 FDD 操作 可调通道带宽:<200 kHz 至 56 MHz 双接收器:6 个差分输入或 12 个单端输入 出色的接收器灵敏度,800 MHz 时噪声系数为 2 dB LO RX 增益控制 用于手动增益的实时监视器和控制信号 独立的自动增益控制 双发射器:4 个差分输出 高线性宽带发射器 TX EVM:≤−40 dB TX 噪声:≤−157 dBm/Hz 本底噪声 TX 监视器:≥66 dB 动态范围,精度为 1 dB 集成小数 N 分频合成器 2.4 Hz 最大本振 (LO) 步长 多芯片同步 CMOS/LVDS 数字接口 应用 点对点通信系统 毫微微蜂窝/微微小区/微小区基站 通用无线电系統
摘要:低噪声放大器(LNA)在射频接收机前端中起着重要作用,其主要作用是放大来自地面噪声的微弱接收信号,并提高接收机的灵敏度。对于工作在高于S波段频率的LNA,迄今为止,大多数设计都使用具有高成本基板材料的印刷电路板(PCB),从而增加了整个接收单元的总价格。本文介绍了一种新方法,即使用FR-4材料(PCB制造中常见的低成本基板)设计LNA。与使用高成本材料基板设计的LNA相比,所提出的LNA将保持所有重要参数(例如增益,噪声系数)的质量。使用阶梯式阻抗匹配技术来达到电路尺寸和效率之间的平衡。所提出的LNA的频率范围位于X波段,该范围适合军用雷达应用。此外,还可以将所需的 LNA 应用于低地球轨道 (LEO) 地球观测卫星系统的地面站接收器前端。关键词:低噪声放大器、LNA、FR-4、雷达、X 波段、接收器前端。*
摘要 — 本文介绍了一种体积小、功耗低的毫米波相控阵接收机前端。本振 (LO) 和射频 (RF) 相移方案相结合,用于降低功耗和 RF 路径损耗。此外,在有源电路的实现中,采用了体隔离技术,以最少的级数实现更高的功率增益。该技术还用于 RF 路径移相器开关以减轻损耗。为了验证所提出的架构,采用 65 nm 体 CMOS 工艺制造了一个单元件 56 至 66 GHz 相控阵接收机前端。根据测量结果,接收机实现了 ∼ 14.85 dB 的功率增益和 5.7 dB 的最小噪声系数 (NF)。测得的平均 RMS 相位和增益误差分别为 ∼ 3.5 ◦ 和 ∼ 0.45 dB。接收器链的输入 1dB 压缩点 (P − 1dB ) 约为 − 19 dBm。完整的接收器(包括有源平衡-不平衡转换器和所需缓冲器(不包括 LO))在 1 V 电源下消耗约 50 mW 功率,不包括焊盘,占用硅片面积为 0.93 mm 2 。
大多数无线局域网标准(如 IEEE 802.11 a/b/g [1–3])都不符合低成本设计目标,因为这些标准对误码率 (BER)、范围和数据速率都有很高的要求。为了满足低成本要求,需要制定一个性能约束较低的标准,以满足工业和商业、家庭自动化、个人电脑 (PC) 外围设备、消费电子产品、个人保健以及玩具和游戏等成本敏感型应用的需求。为此,IEEE 最近批准了 802.15.4 标准,可在 868/915 MHz 和 2.4 GHz 下运行 [4]。本文介绍了 868/915 MHz ZigBee 收发器的自上而下系统设计和仿真,并推导出一组符合 IEEE 802.15.4 物理 (PHY) 层标准要求的系统级无线电规范。系统级无线电规范包括系统噪声系数、灵敏度、本振相位噪声、信道整形和选择滤波器的阶数、互调特性、模数转换器和数模转换器 (ADC/DAC) 的位分辨率、信道抑制性能和频谱整形。本文还讨论了采用 0.18 µ m 互补金属氧化物半导体 (CMOS) 技术实现单芯片低功耗低成本 ZigBee 收发器的电路拓扑。
D.1 简介……………………………………………………... D-1 D.2 测量系统………………………………………………. D-1 D.3 BPL 测量…………………………………………………... D-3 D.3.1 BPL 发射测量的背景……………………… D-3 D.3.2 沿通电电力线的 BPL 测量………. D-10 D.3.3 远离带电电力线的 BPL 测量... D-23 D.3.4 使用各种检测器测量 BPL ……………….. D-37 D.3.5 不同天线高度的 BPL 测量 ……………….. D-41 D.3.6 BPL APD 的测量 ………………………………………… D-47 D.4 幅度概率分布的背景 …………... D-50 D.5 使用噪声二极管进行增益和噪声系数校准 .................... D-59 附录 E BPL 建模输出 E.1 简介 …………………………………………………………... E-1 E.2 表格和 NEC 图 ………………………………………………... E-1 附录 F NTIA 第 2 阶段研究 BPL 部署模型 F.1 简介 ……………………………………………………... F-1 F.2 街区部署模型 …………………………………... F-1 F.3 天线覆盖区域部署模型 ………………………… F-3 F.4 区域部署模型 ………………………………………… F-4 F.4.1 区域部署模型描述 …………………………… F-5 F.4.2 家庭密度和分布 ……………………………... F-5 F.4.3 BPL 设备的密度和分布 …………………………... F-6 F.4.4 其他因素……………………………………………………. F-6 F.4.5 区域模型输出 ………………………………………………. F-9 第一卷 致谢 ………………………………………………………………........ iii 前言 …………………………………………………………………………... iv 执行摘要 ……………………………………………………………………........ v 目录 …………………………………………………………………… vi