摘要 本文提出了一种低功耗宽带射频到基带 (BB) 电流复用接收器 (CRR) 前端,它同时利用了 1/f 噪声消除 (NC) 技术和有源电感器 (AI),工作频率为 1 GHz 至 1.7 GHz,适用于 L 波段应用,包括那些需要高调制带宽的应用。CRR 前端采用单电源,并与 BB 电路共享低噪声跨导放大器 (LNTA) 的偏置电流,以降低功耗。为了最大限度地减少下变频之前射频 (RF) 信号的损失,高阻抗 AI 电路将混频器输入与 CRR 输出节点隔离。1/f NC 电路可抑制泄漏到输出的 LNTA 低频噪声。带有 gm 增强的共栅极 LNTA 以及单端到差分 LC 平衡-不平衡转换器用于增强输入匹配、变频增益和噪声系数 (NF)。所提出的接收器采用 TSMC 130 nm CMOS 工艺制造,占用有效面积为 0.54mm 2 。输入匹配 (S 11 ) 在 1 GHz 至 1 . 7 GHz 范围内低于 − 10 dB。在本振 (LO) 频率为 1 . 3 GHz、中频 (IF) 为 10 MHz 和默认电流设置下,CRR 实现了 41 . 5 dB 的转换增益、6 . 5 dB 的双边带 (DSB) NF 和 − 28.2 dBm 的 IIP3,同时消耗 1.66 mA 电流,电源电压为 1 . 2 V。
摘要:本文介绍并讨论了一种用于分集接收模块的低频带 (LB) 低噪声放大器 (LNA) 设计,该模块适用于多模蜂窝手机。LB LNA 覆盖 5 个不同频段,频率范围从 617 MHz 到 960 MHz,5 刀单掷 (5PST) 开关用于选择不同的频段,其中两个用于主频段,三个用于辅助频段。所提出的结构涵盖从 -12 到 18 dB 的增益模式,增益步长为 6 dB,每种增益模式的电流消耗都不同。为了在高增益模式下达到噪声系数 (NF) 规格,我们在本设计中采用了具有电感源退化结构的共源共栅 (CS)。为了实现 S 11 参数和电流消耗规格,高增益模式(18 dB、12 dB 和 6 dB)和低增益模式(0 dB、-6 dB 和 -12 dB)的内核和共源共栅晶体管已被分开。尽管如此,为了保持较小的面积并将相位不连续性保持在 ± 10 ◦ 以内,我们在两个内核之间共享了退化和负载电感器。为了补偿工艺、电压和温度 (PVT) 变化的性能,该结构采用了低压差 (LDO) 稳压器和极端电压补偿器。该设计在65nm RSB工艺设计套件中进行,电源电压为1V,以18dB和-12dB增益模式为例,其NF分别为1.2dB和16dB,电流消耗为10.8mA和1.2mA,输入三阶截取点(IIP3)分别为-6dBm和8dBm。
AAL-5 56, 452 交流电源 198 便携式 262 交流电源/分析仪 198–201 交流/直流电流探头(示波器) 135 接入环路测试 62, 418, 422, 535 附件 适配器 APC-3.5 569, 570 APC-7 569, 570 用于网络分析仪 287,290, 300 通用 569, 570 用于定时发生器 409 概述/订购信息 569, 570 楔形探头适配器 132, 393, 394 鳄鱼夹引线 369 衰减器 322–325 衰减器/开关驱动器 317 BNC 套件 294 电路板测试和检查 535 有线电视分析仪 528, 529 电缆 50欧姆 409 和适配器 568–570 天线 509 HP 11679A/B 延长线 279 HP 85022A 系统电缆套件 279 HP-IB 互连 568 IEC-320 跳线 567 匹配 369 功率传感器 309 RF 294 测试端口 294, 300, 301 耦合器,同轴 328 延迟线,22 纳秒 128 检波器,同轴 326, 327 数字万用表 161, 162 EMC 分析仪 336, 338, 339 频率和时间标准 509 GPS 天线 509 高功率脉冲发生器 408 阻抗/增益相位分析仪 359 Infiniium 示波器 125 LCR 仪表 366, 367 光波 428 逻辑分析仪 393, 394 微波网络分析仪 301 万用表 161, 162 网络分析仪 微波网络分析仪 297, 301 射频网络分析仪 290 矢量电压表和输入模块 298 噪声系数和标量测量 258 示波器 52, 125, 128 功率分配器 294 探头 有源探头 52, 134, 262, 272 电流探头 135, 162, 339 介电探头套件 363 弹性探头 393, 394
TRMM降水雷达(PR)是第一台星载降雨雷达,也是TRMM上唯一能够直接观测降雨垂直分布的仪器。TRMM PR的频率为13.8 GHz。PR可以实现陆地和海洋的定量降雨估计。PR还可以提供降雨高度信息,这对基于辐射计的降雨率反演算法很有用。PR的覆盖范围足够小,可以研究不均匀降雨对低频微波辐射计通道相对粗糙覆盖范围的影响。PR的主要设计和性能参数如表0-2所示[Kozu等,2001]。PR的观测几何如图0-1所示。在正常观测模式下,PR 天线波束在 ±17 的横向轨道方向上扫描,结果从一端到另一端的扫描宽度为 220 公里。PR 的天线波束宽度为 0.71 ,在 ±17 的扫描角度内有 49 个观测角度箱。当 TRMM 处于 350 公里的标称高度时,水平分辨率(覆盖区大小)在天底为 4.3 公里,在扫描边缘约为 5 公里。TRMM PR 的距离分辨率为 250 米,等于天底的垂直分辨率。对于每个观测角度箱,雷达回波采样是在海面和 15 公里高度之间的距离门上进行的。对于天底入射,还收集了高达 5 公里高度的“镜像”。此外,还部分收集了表面回波(扫描角度在 ±9.94 以内)和降雨回波(扫描角度在 ±3.55 以内,高达 7.5 公里)的“过采样”回波数据。这些过采样数据将用于精确测量表面回波水平和融化层结构。根据发射前地面测试和轨道测试确定,最小可检测 Z(对应于噪声等效接收功率)从 23.3 dBZ(基于规范要求)提高到 20.8 dBZ。这主要是由于发射功率增加和接收器噪声系数降低。
通过AlGaN/GaN/InGaN结构实现8 W mm 1,通过N极性GaN HEMT实现94 GHz时8 W mm 1 [3]。这些结果对于商业(5G及以上、汽车雷达)和国防(SATCOM、雷达)应用越来越重要,所有这些应用都在向毫米波频率范围(30 – 300 GHz)推进。为了进一步提高GaN HEMT的优势,我们的研究小组在氮化铝(AlN)缓冲层上引入了HEMT。[4 – 6]通过用AlN替换AlGaN顶部势垒并用AlN替换典型的GaN缓冲层,AlN/GaN/AlN异质结构具有更高的热导率、改善了薄GaN通道(<30nm)的载流子限制,并且与其他传统顶部势垒材料(如AlGaN或InAlN)相比,顶部势垒具有出色的垂直可扩展性。其他研究小组也展示了基于AlN 的器件的有希望的结果,包括基于AlN 衬底的HEMT,在X 波段实现15 W mm 1 [7] ,AlN 缓冲区击穿功率为 5 MV cm 1 [8] 。已经展示了使用AlN 顶部势垒的HEMT,包括GaN HEMT 记录f T = f max 为454/444 GHz,[9 – 11] PAE 为27% ,相关输出功率为1.3 W的W 波段功率放大器,[12] 噪声系数小于2的K a 波段低噪声放大器,[13] 以及40 GHz 时为4.5 W mm 1 [14] 。所有这些器件都基于AlN/GaN/AlGaN 异质结构。 AlN/GaN HEMT 已显示出 Ga 极性 HEMT 在 W 波段的创纪录输出功率,在 94 GHz 时 P out ¼ 4 W mm 1。[15] 除了射频 (RF) HEMT 之外,氮化铝还具有单片集成大电流 GaN/AlN p 型场效应晶体管 (pFET) [16 – 18] 和晶体 AlN 体声波滤波器 [19] 的潜力,这两者都是通过 AlN 缓冲层实现的。SiC 衬底以衬底集成波导 (SIW) 和天线的形式实现了进一步的集成。[20] 这种集成生态系统被称为 AlN 平台,使高功率氮化物互补金属氧化物半导体 (CMOS)、RF 滤波器、单片微波集成电路 (MMIC) 以及 RF 波导和天线共存于一个单片芯片上。[21]
5 收发器构建模块建模 ................................................................................................................................ 20 5.1 信号路径组件 .............................................................................................................................................. 20 5.1.1 接收器噪声系数和非线性 ...................................................................................................................... 20 5.1.1.1 高级建模 ...................................................................................................................................... 20 5.1.1.2 THz 频段接收器非线性模型 ...................................................................................................... 21 5.1.1.3 三阶截点 IIP3dBm 和 SNDR ............................................................................................. 22 5.1.2 发射器输出功率 ................................................................................................................................ 22 5.1.2.1 输出功率的作用 ................................................................................................................................ 22 5.1.2.2 功率放大器输出功率和效率 ............................................................................................................. 23 5.1.3 功率放大器非线性建模................................................................................................... 24 5.2 时钟组件 ...................................................................................................................................... 25 5.2.1 锁相环和倍频器的相位噪声分布 ................................................................................................ 25 5.2.2 时间域相位噪声样本的生成 ............................................................................................................. 28 5.2.2.1 离散时间相位噪声模型 ............................................................................................................. 28 5.2.2.2 相位噪声功率谱密度采样 ............................................................................................................. 29 5.2.2.3 离散 PSD 缩放 ............................................................................................................................. 30 5.2.2.4 相位噪声样本生成 ............................................................................................................................. 30 5.2.2.4.1 随机性包含 ............................................................................................................................. 30 5.2.2.4.2 相位样本生成 ............................................................................................................................. 30 5.2.2.4.3 相位噪声样本生成................................................................................................................ 30 5.2.2.5 单次长生成................................................................................................................................................ 30 5.2.2.6 建议............................................................................................................................................... 31 5.3 数据转换器和基带滤波器........................................................................................................................ 31 5.3.0 简介....................................................................................................................................................... 31 5.3.1 数据转换器....................................................................................................................................... 31 5.3.1.0 简介................................................................................................................................................. 31 5.3.1.1 数据转换器性能指标.................................................................................................................... 32 5.3.1.2 性能趋势.................................................................................................................................... 42 5.4 光束斜视.................................................................................................................................................... 43 5.4.1 THz 波段的光束斜视效应............................................................................................................. 43 5.4.2 光束斜视的理论分析................................................................................................... 44 5.4.3 波束斜视处理 ................................................................................................................................ 48 5.5 射频损伤对 THz 链路的影响 ................................................................................................................ 5031 5.3.1.1 数据转换器性能指标 ...................................................................................................................... 32 5.3.1.2 性能趋势 ...................................................................................................................................... 42 5.4 光束斜视 ......................................................................................................................................................... 43 5.4.1 THz 频段的光束斜视效应 ......................................................................................................................... 43 5.4.2 光束斜视的理论分析 ............................................................................................................................. 44 5.4.3 光束斜视处理 ...................................................................................................................................... 48 5.5 RF 损伤对 THz 链路的影响 ............................................................................................................................. 5031 5.3.1.1 数据转换器性能指标 ...................................................................................................................... 32 5.3.1.2 性能趋势 ...................................................................................................................................... 42 5.4 光束斜视 ......................................................................................................................................................... 43 5.4.1 THz 频段的光束斜视效应 ......................................................................................................................... 43 5.4.2 光束斜视的理论分析 ............................................................................................................................. 44 5.4.3 光束斜视处理 ...................................................................................................................................... 48 5.5 RF 损伤对 THz 链路的影响 ............................................................................................................................. 50
第一周:RFIC 和通信电子简介,(RF 微电子学书籍和高频集成电路书籍的第 2 章) 第二周:器件建模(MOS 和 BJT RF 器件模型、晶体管操作、晶体管截止频率),(高频集成电路书籍的第 4 章) 第三周:器件建模、无源元件(电感器、电容、电阻性能和 RF 模型,(高频集成电路书籍的第 4 章和 RF 微电子学书籍的第 7 章) 其他一些参考文献: “MOS 晶体管的操作和建模”Yannis Tsividis、Mc-Graw Hill “用于 RFIC 设计的 MOS 晶体管建模”,Enz 等,IEEE Transaction on Solid- State Circuits,第 35 卷,2000 年 第 4 周:匹配网络的阻抗匹配和品质因数, 第五周:放大器的匹配网络、L 匹配、Pi 匹配、分布式放大器、反馈网络第六周 低噪声放大器(LNA)设计,(《射频微电子学》一书的第 5 章和《高频集成电路》一书的第 7 章) 第 7 周:带 CS、CG 级、具有电感衰减的 LNA,(《射频微电子学》一书的第 5 章和《高频集成电路》一书的第 7 章) 第 8 周:电路噪声分析(热噪声/闪烁噪声)噪声系数 第 9 周:线性和非线性(IM3- IM2)1dB 压缩、互调失真、截取点、交叉调制。期中考试 I 第 10 周:混频器和频率转换(混频器噪声)、无源转换、有源转换、I/Q 调制 PPF,(《高频集成电路》一书的第 9 章、《射频微电子学》一书的第 6 章) 第 11 周:不同的发射器/接收器架构。外差、同差、镜像抑制比 第 12 周:VCO 和振荡器:VCO 基础和基本原理、振荡器的反馈视图、交叉耦合振荡器(《高频集成电路》一书第 10 章、《射频微电子学》一书第 8 章)。 第 13 周:具有宽调谐范围和变容二极管 Q 值限制的压控振荡器、相位噪声概念和分析、低噪声 VCO 拓扑(《高频集成电路》一书第 10 章、《射频微电子学》一书第 8 章) 期中考试 II 第 14 周:用于 SNR、BER、EVM 和不同调制的收发器架构(《高频集成电路》一书第 10 章、《射频微电子学》一书第 8 章) 第 15 周:具有不同通信调制/解调的收发器架构和设计示例、注意事项/讲座 29 30 /发射机和接收机的一般考虑