消声器技术 Silentor 的专利排气噪声衰减原理将吸收和反射衰减与先进的空气动力学相结合,事实证明,Silentor 消声器在以下方面优于传统消声器 - 噪声衰减 - 背压 - 空间利用率 这些参数中的任何一个都可以进行优化,如较小的三角形所示,例如,在给定体积内更有效的噪声衰减或更低的背压。还可以优化任何参数组合,例如,降低给定体积和背压,同时仍保持原始噪声衰减。 特殊的低频衰减 与其他消声器相比,Silentor 消声器的特殊之处在于它们能够衰减人耳可听到的所有频率 - 包括低频噪声,而传统消声器通常很难降低低频噪声。这种低频噪声取决于发动机的转速和气缸数,通常不仅令人恼火,而且是实现可接受的总噪声水平的关键噪声。节省燃料 Silentor 压力恢复扩散器和其他空气动力学元件可以大大降低噪音,而伴随的压力损失却非常有限。 降低背压可以减少燃料消耗或增加发动机的动量和功率。 尺寸有限 Silentor 的衰减原理使其能够按照规格降低噪音,即使在可用空间非常有限和不规则以至于无法安装传统消声器的情况下也是如此。 使用寿命更长 Silentor 消声器的使用寿命比您通常预期的要长。 作为“半压力”容器,其结构本身经过久经考验且坚固耐用。 此外,吸收材料以特殊的方式放置在消声器内部并受到保护,这意味着 Silentor 消声器在其整个使用寿命期间都能保持其衰减能力。
摘要:电池储能系统 (BESS) 在消除可再生能源发电相关的不确定性、维持电网稳定性和提高灵活性方面发挥着关键作用。本文使用 BESS 同时提供能源套利 (EA) 和频率调节 (FR) 服务,以在物理约束范围内最大化其总收益。EA 和 FR 操作在不同的时间尺度上进行。多时间尺度问题被表述为两个嵌套的马尔可夫决策过程 (MDP) 子模型。该问题是一个复杂的决策问题,具有大量高维数据和不确定性(例如电价)。因此,提出了一种新颖的协同优化方案来处理多时间尺度问题,并协调 EA 和 FR 服务。使用三重深度确定性策略梯度和探索噪声衰减 (TDD-ND) 方法在每个时间尺度上获得最佳策略。使用来自美国 PJM 监管市场的实时电价和监管信号数据进行模拟。模拟结果表明,所提出的方法比文献中研究的其他策略表现更好。
摘要:电池储能系统 (BESS) 在消除可再生能源发电相关的不确定性、维持电网稳定性和提高灵活性方面发挥着关键作用。本文使用 BESS 同时提供能源套利 (EA) 和频率调节 (FR) 服务,以在物理约束范围内最大化其总收益。EA 和 FR 操作在不同的时间尺度上进行。多时间尺度问题被表述为两个嵌套的马尔可夫决策过程 (MDP) 子模型。该问题是一个复杂的决策问题,具有大量高维数据和不确定性(例如电价)。因此,提出了一种新颖的协同优化方案来处理多时间尺度问题,并协调 EA 和 FR 服务。使用三重深度确定性策略梯度和探索噪声衰减 (TDD-ND) 方法在每个时间尺度上获得最佳策略。使用来自美国 PJM 监管市场的实时电价和监管信号数据进行模拟。模拟结果表明,所提出的方法比文献中研究的其他策略表现更好。