摘要:细胞外囊泡(EV),包括外泌体和微泡,是几乎所有细胞类型的小膜结构。它们已经成为细胞间交流中的关键介体,在各种生理和病理过程中扮演着关键的角色,尤其是在免疫领域内。这些角色超越了细胞相互作用,因为细胞外囊泡作为免疫调节的多功能和动态成分,影响了先天和适应性免疫。他们的多方面参与包括免疫细胞的激活,抗原释放和免疫调节,强调了它们在维持免疫稳态中的重要性,并有助于免疫相关疾病的发病机理。细胞外囊泡通过传递多种生物活性分子(包括蛋白质,脂质和核酸)来参与免疫调节,从而影响靶细胞中的基因表达。本手稿提出了一项全面的综述,涵盖了体外和体内研究,旨在阐明EV调节人类免疫力的机制。了解细胞外囊泡与免疫力之间的复杂相互作用对于揭示适用于各种免疫疾病的新型治疗靶标和诊断工具,包括自身免疫性疾病,感染性疾病和癌症。此外,确认电动汽车的潜力是多功能药物输送车,对免疫疗法的未来具有重要的希望。
细胞衰老是一种防止受损细胞增殖的进化保守机制,是在生理和病理条件下涉及的非常相关的细胞反应。即使衰老细胞稳定地捕捉到稳定的生长,它们表现出复杂且知之甚少的分泌表型,称为衰老相关的分泌表型,该表型由可溶性蛋白和细胞外囊泡(EV)组成。细胞外囊泡最初被描述为消除细胞代谢损坏的组成部分的废物管理机制,但越来越多的证据表明,电动汽车也可以在细胞间交流中起重要作用。最近,一些研究表明,电动汽车在细胞衰老过程中可能具有基本功能。我们在这篇综述中的目的是阐明有关电动汽车在细胞衰老中的作用作为细胞对细胞通信中的关键介体的越来越多的文献。
肾细胞癌 (RCC) 是最常见的肾癌类型。越来越多的证据表明,细胞外囊泡 (EV) 协调了 RCC 的肿瘤发生、转移、免疫逃避和药物反应中的多个过程。EV 是纳米大小的脂质膜结合囊泡,几乎所有类型的细胞都会分泌到细胞外环境中。大量生物活性分子(如 RNA、DNA、蛋白质和脂质)都可以通过 EV 传递,以进行细胞间通讯。因此,EV 的丰富内容是通过计算分析和实验验证进行生物标志物识别的诱人资源库。具有出色生物相容性和生物分布的 EV 是天然平台,可以对其进行设计以提供可行的 RCC 治疗药物输送策略。此外,EV 在 RCC 进展中的多方面作用也提供了实质性目标并促进了基于 EV 的药物发现,这将通过使用人工智能方法加速。本文综述了EVs在肾细胞癌发生、转移、免疫逃避、耐药等方面的重要作用,并展望了EVs在肾细胞癌中的应用前景,包括生物标志物识别、药物载体开发、药物靶标发现等。
药物基因组学(PGX)是精密药物的重要组成部分,它有望根据个人的遗传信息量身定制的治疗方法。探索研究中的计划,这些计划有助于将PGX测试整合到临床环境中,确定潜在的障碍和挑战以及计划未来的方向,对于任何人群中的PGX实施都很重要。卡塔尔是中东的典范案例研究,与多样化的移民人口,先进的医疗保健系统,国家基因组计划以及有关PGX和Precision医学的几项教育计划相比,本地人口很少。本文试图在全球背景下概述卡塔尔中PGX研究和实施的现状,强调正在进行的计划和教育工作。将PGX纳入大学课程和医疗保健提供者培训,以及精确的医学会议,展示了卡塔尔致力于推进这一领域的承诺。然而,挑战仍然存在,包括对人群特定实施策略的要求,复杂的遗传数据解释,缺乏标准化和有限的意识。审查提出了持续研究投资中未来方向的政策制定,为PGX实施,道德考虑,技术进步和全球合作的可行性进行临床试验,以克服这些障碍。
低氧信号传导在生理和病理状况中起重要作用。心脏组织中的缺氧会根据暴露于低氧状态的持续时间而产生不同的后果。虽然急性低氧暴露会导致心脏组织的可逆适应性,但慢性缺氧加剧心脏功能障碍,导致组织破坏。细胞外囊泡(EV)是小膜囊泡,充当细胞间通信的介体。evs由不同的细胞类型分泌,由口腔衍生的间充质干细胞(MSC)(包括人牙龈MSC(HGMSC))产生的细胞类型具有促血管生成和抗炎性弹药作用,并在组织再生中显示出治疗作用。本工作的目的是通过HGMSCS产生的EV的潜在保护性和再生作用,在缺氧条件的HL-1心肌细胞的体外模型中,通过以下表达伴有氧化,氧化应激,血管生成,血管生成,生存和apptoptotic标记的表达分析。 IL6,NRF2,CASP-3,BAX和VEGF。结果表明,HGMSCS衍生的EV施加了暴露于前后缺氧条件的HL-1心肌细胞的保护HL-1心肌细胞。此外,CASP3和BAX表达的调节表明,EV降低了凋亡。进行了从HGMSC衍生的电动汽车中的microRNA分析,以评估所提出的标记的表观遗传调节。The following microRNAs: hsa-miR-138-5p, hsa-miR-17- 5p, hsa-miR-18a-5p, hsa-miR-21-5p, hsa-miR-324-5p, hsa-miR-133a-3p, hsa- miR-150-5p, hsa-miR-199a-5p, hsa-miR-128-3p and HSA-MIR-221-3P可以通过确定其调节
细胞外囊泡(EV)是细胞间通信的使者,但是受体细胞解释EV消息的确切机制仍未完全理解。在这项研究中,我们探讨了电动汽车的起源,它们的蛋白质货物的起源以及受体细胞类型如何影响胚胎植入模型中对EV的细胞反应。我们使用定量聚合酶链(QPCR)对受体细胞中锌纤维蛋白81(ZNF81)基因表达的两种类型的EV进行了处理。还分析了EV货物的蛋白质组学含量。结果表明,Znf81基因的下调是接受性子宫内膜上皮细胞对滋养细胞衍生的EV的特定细胞反应。蛋白质货物分析表明,电动汽车的蛋白质组学因素取决于其原产细胞,因此可能会影响受体细胞对EV的反应。Furthermore, trophoblastic EVs were found to be speci fi cally enriched with transcription factors such as CTNNB1 (catenin beta- 1), HDAC2 (histone deacetylase 2), and NOTCH1 (neurogenic locus notch homolog protein 1), which are known regulators of ZNF81 gene expression.当前的研究提供了支持EV特异性存在的令人信服的证据,在这种情况下,电动汽车和受体细胞类型的特征共同有助于调节EV目标特定。此外,EV蛋白货物分析表明,转录因子与滋养细胞EV的特定功能之间存在潜在的关联。这种体外胚胎植入模型和ZNF81读出提供了一个独特的平台来研究自然细胞 - 细胞通信中的EV特定功能。
关于电动汽车的出版物。在EV计量学以及理解和应用EV生物学方面已取得了重要的进步。然而,由于EV命名法的挑战,与非详细细胞外颗粒的分离,表征和功能研究,由于基本生物学到临床应用的范围,障碍仍在实现从基本生物学到临床应用的潜力。为了解决这个迅速发展的领域中的挑战和机会,国际细胞外囊泡学会(ISEV)更新了其“最小的细胞外囊泡研究信息”,该学会于2014年首次发布,然后于2018年出版为Misev2014和Misev2018和Misev2018,并进行了评估。当前文档MISEV2023的目标是为研究人员提供可用方法的更新快照及其对电动汽车从多个来源的生产,分离和表征的优势和局限性,包括细胞培养,身体流体和实心组织。除了在电动汽车研究的基本原理中介绍最新的艺术状态外,该文档还涵盖了目前正在扩大该领域边界的先进技术和方法。MISEV2023还包括有关EV释放和摄取的新部分,以及对研究电动汽车的体内方法的简短讨论。汇编来自ISEV专家工作队和1000多个研究人员的反馈,该文档传达了电动汽车研究的现状,以促进稳健的科学发现并更快地推动该领域的前进。
开放存取 本文件根据 Creative Commons Attribution 4.0 International License 获得许可,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供 Creative Commons 许可证的链接,并指明是否进行了更改。在作者匿名的情况下,例如匿名同行评审员的报告,作者归属应为“匿名审稿人”,然后明确归属源作品。本文件中的图像或其他第三方材料包含在文章的 Creative Commons 许可证中,除非在材料的致谢中另有说明。如果材料未包含在文章的 Creative Commons 许可证中,并且您的预期用途不被法定规定允许或超出允许用途,则需要直接从版权所有者处获得许可。要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0。
在PTND大会的第二天,举行了11次科学会议,其中包括针对年轻的Neuro日志的竞争演讲。科学课程涉及儿科神经外科,其中讨论了癫痫的手术治疗,即立体定位在诊断OUN疾病中的作用。平行疗程涉及头痛 - 头痛,月经偏头痛,轻度颅内高血压的鲸鱼眼睛。下一届会议涉及对SMA和NMOSD治疗的突破。在Neuroimmu会议上,讨论了自身免疫性脑炎,SM和Mogad的识别。在有关血管疾病的会议上,TIA在儿童和青少年,WA Skuluulatie和中风,儿童和青少年的静脉血栓形成中呈现。在“ onasemnogenaqueparwówek-未来的疗法?”会议上迪拜顾问儿科神经科医生Vivek Mundada博士和SMA儿童中使用基因治疗的讲座进行了题为“基因治疗现实世界经验”的讲座。