在全球范围内,疟疾仍然是最普遍的寄生虫之一。世界卫生组织(WHO)2022年世界疟疾报告显示,全球估计有2.47亿例和96%的疟疾死亡发生在非洲(1)。引起该疾病的生物来自疟原虫属。当感染性雌性蚊子摄取血液餐时,这些寄生虫会传播到易感宿主。四种不同的疟原虫感染了人类,即恶性疟原虫,P。ovale,P。疟疾和Vivax。虽然Vivax是全球最广泛的质量物种,但恶性疟原虫是最普遍,最危险的,并且主要在非洲发现,占估计全球临床疟疾病例的99.7%(1)。卵子疟原虫进一步分为两个亚种; P.O。柯蒂西和P. Wallikeri(2)。除了典型的人类寄生虫外,最近还发现了许多猿猴寄生虫
在全球范围内,乳腺癌是女性中最常见的癌症形式。乳腺癌的肿瘤微环境通常表现出缺氧。缺氧诱导因子 1-alpha 是一种转录因子,在乳腺癌中被发现过度表达和激活,通过介导一系列反应在缺氧微环境中发挥关键作用。缺氧诱导因子 1-alpha 参与调节下游通路和靶基因,这些通路和靶基因在缺氧条件下至关重要,包括糖酵解、血管生成和转移。这些过程通过管理与肿瘤侵袭、转移、免疫逃避和耐药性相关的癌症相关活动,显著促进乳腺癌进展,导致患者预后不良。因此,人们对缺氧诱导因子 1-alpha 作为癌症治疗的潜在靶点有着浓厚的兴趣。目前,针对缺氧诱导因子 1-alpha 的药物研究主要处于临床前阶段,这凸显了深入了解 HIF-1 a 及其调控途径的必要性。预计未来将有有效的 HIF-1 a 抑制剂进入临床试验,为乳腺癌患者带来新的希望。因此,本综述重点介绍 HIF-1 a 的结构和功能、其在乳腺癌进展中的作用以及对抗 HIF-1 a 依赖性耐药性的策略,强调其治疗潜力。
Diaialoganglioside GD2在包括神经母细胞瘤和黑色素瘤在内的各种人类肿瘤类型中表达。3F8结合后,对GD2的鼠单克隆抗体(MAB),神经母细胞瘤和某些黑色素瘤对通过人的补体杀死很敏感,而某些甲虫则不是。研究了补体介导的细胞毒性中这些差异的基础机制,将补体不敏感的黑色素瘤细胞系与衰减加速因子(DAF)的表达进行了比较,衰减加速因子(DAF),一种膜调节蛋白,一种保护血细胞,可保护血液细胞免受自动补体攻击。虽然DAF在神经母细胞瘤中是无法检测的,但它以补充不敏感的素瘤存在。当DAF的功能被抗DAF MAB阻断时,C3的摄取和补体介导的液位黑色素瘤系的裂解显着增强。f(ab')2个碎片在增强裂解方面与完整的抗DAF mAb一样有效。DAF阴性和DAF阳性黑色素瘤细胞系对Cobra毒液因子处理的血清对被动裂解具有相当抗性。数据表明,在某些肿瘤中,DAF活动解释了它们对涉及杀害的抵抗力。通过阻止DAF功能来使这些细胞对这些细胞的敏感性的能力可能暗示免疫疗法。
包括 IL-25、IL-33 和胸腺基质淋巴细胞生成素 (TSLP) 在内的警报素细胞因子可作为危险信号触发宿主免疫,以应对寄生虫感染等致病因素引起的组织损伤。寄生虫病也为研究其功能和机制提供了极好的背景。许多研究表明,非免疫细胞(如上皮细胞和基质细胞)释放的警报素细胞因子会诱导宿主启动 2 型免疫,从而驱除寄生虫,但也会导致宿主病理,如组织损伤和纤维化。相比之下,来自免疫细胞(如树突状细胞)的警报素细胞因子(尤其是 IL-33)可能会引发免疫抑制环境,从而促进宿主对寄生虫的耐受性。此外,据报道,警报素细胞因子在寄生虫感染中的作用取决于寄生虫种类、警报素细胞因子的细胞来源和免疫微环境,所有这些都与寄生部位或器官有关。本叙述性综述旨在提供有关警报素细胞因子在涉及不同器官(包括肠、肺、肝和脑)的寄生虫感染中的关键和多样化作用的信息。
心血管疾病(CVD)是影响心脏和/或血管的疾病簇,是全球死亡和残疾的最大原因。在2019年,据估计,1,790万死亡归因于CVD,这是全球死亡的第一个主要原因(1)。CVD具有复杂的病因,并且在明显的症状事件发生前经常发展数十年。早期干预对于降低CVD的发病率和死亡率至关重要,这将对公共卫生负担产生深远的影响。因此,对不同危险因素的因果效应(尤其是在微观和分子水平上)的因果关系的改进,可以重新预防策略,并为CVD的治疗干预提供新的靶标。细胞因子在调节炎症反应,改变血管收缩和阻碍内皮依赖的血管舒张方面起关键部分,因此,它们可能提供预防CVD的潜在靶标(2)。广泛的流行病学证据已经证明了细胞因子与CVD之间的密切关联。例如,一项包含29个队列研究的荟萃分析表明,几种细胞因子,例如白介素6(IL-6),IL-18和肿瘤坏死因子α(TNF-a),每种都与发展冠状动脉疾病(CAD)的风险(CAD)相关,在近似log-log-log-fistry-lorig-dipplist fivestion危险中,传统的风险是独立于传统的(3)。另一项涉及17,180名个体的研究发现,单核细胞趋化蛋白1(MCP-1)的循环水平与中风长期风险的正相关(4)。然而,经典的观察设计容易逆转因果关系,并混淆了促进因果的推论,并且对细胞因子干预进行临床试验具有挑战性。Mendelian随机化(MR)是一项可靠的技术,可以解决上述观察性研究伴随的局限性,并通过将遗传变异作为工具变量(IVS)提供了最高水平的证据层次结构(5)。此方法,当满足某些假设时,可以确定
摘要:RASSF1A 肿瘤抑制因子是一种参与细胞信号传导的再生蛋白。越来越多的证据表明,这种蛋白质位于复杂信号网络的交叉点,该网络包括细胞稳态的关键调节器,例如 Ras、MST2/Hippo、p53 和死亡受体通路。RASSF1A 表达的丧失是实体肿瘤中最常见的事件之一,通常是由 DNA 甲基化导致的基因沉默引起的。因此,重新表达 RASSF1A 或针对其复杂信号网络的影响模块进行治疗是治疗多种肿瘤类型的一种有希望的途径。在这里,我们回顾了 RASSF1A 信号网络的主要模块以及网络失调对不同癌症类型的影响的证据。具体来说,我们总结了介导 RASSF1A 启动子甲基化的表观遗传机制以及 Hippo 和 RAF1 信号模块。最后,我们讨论了重建 RASSF1A 功能的不同策略,以及如何通过多靶向途径方法选择此网络中的可用药节点来开发新的癌症治疗方法。
85( - %+’:e6oo:p7q jr stut stut 6wj7?:7UAPJ7,:7O6W?P6TA:7WAQ JR O>:S6QAQUAQ5:Quaquu:Quaquu:Qaov P:PQ:PQ:6PX> PAVI> PAVI> P:p:� 只有:,j7opju:pqa6w q5s \:nught a7:xjwj?vy g7 o> aq z6z:p,:o> o> o> o> o> paxs:luq 6wj7?:78 UAPJ7,:7O6W?P6AT:7OQ 67T O>:P:W6J7Q> azs s:OU [:7 QZ:7 QZ:7 QZ:XA:XA:QUQ 67T 67T 67T 6SJU:?PJ57T NAS:O67 EW6O:65 , 6WZA7: ,:6TJ[ 67T 6WZA7: QO:ZZ:Y N>: P:Q5WOQ 6P: Q5,,6PA]:T 6Q RJWWJ[Q :( % ) "+) QZ:XA:Q [:P: P:XJPT:T A7 "'# ZWJOQ' JR '# QAO:Q%)。jr [> ax> jxx5pp:t a7 6wza7:,:6t8 j [q 67t%*'a7 6wza7:qo:qo:zz:zz:y n>:75,s:p jr qz:xa:xa:xa:q p67?:t rpj, * oj *“ a7 6wza7:,:6tj [> aw:ao p67?:t rpj,“ oj%(a7 6wza7:qo:zz:y(”)= z:xa:xa:q pax> 7:qq a7xp:6q:6q:t [ao> w6oao5t:67t wj7 wj7?ao5t:ao5t:ao5t:a o5t:a o5t:k p:sp:xp:xp:xp:xp:xp:xp:6q:6 q:so: 676WA QZ:XAQUE:7:7OAJ7,:7O6W R6XAPQ'Q> Q'A:QA PAXAD [6Q QA?Q:6QJ7 ZP:Xazao6OAJ7 67T [6p,o> a7t:^y( *)= Z:XA:XA:Q pax> 7:qQ [6Q ZJQAOAU:WV XJPP:WV XJPP:W6O:W6O:W6O:W6O:w6o:t [ao> 6SJU:? 6sju:?PJ57T ́,6QQQQ ]6WZA7:,:6TJ [6wza7:QO:QO:ZZ:,NAS:,NAS:O67 EW6O:65 b:QQ PAX PAX PAX
摘要 表皮生长因子 (EGF) 可诱导非肿瘤大鼠肾成纤维细胞在细胞培养中发生转化表型,这些转化表型是从成年小鼠的许多非肿瘤组织(包括颌下腺、肾脏、肝脏、肌肉、心脏和大脑)中分离出来的。它们与之前描述的从肿瘤细胞中分离出来的转化生长因子 (TGF) 类似,具体如下:它们可通过酸/乙醇提取,并且是酸稳定的低分子量 (6000-10,000) 多肽,需要二硫键才能起作用,并且它们会导致非肿瘤指示细胞的锚定非依赖性生长,而这些细胞在没有它们的情况下不会在软琼脂中生长。从雄性小鼠的颌下腺中对这些 TGF 进行部分纯化,结果表明它们不同于 EGF。与之前描述的细胞外 TGF 不同,但与来自肿瘤细胞的某些细胞 TGF 一样,它们通过 EGF 增强其促进锚定非依赖性生长的能力。颌下腺 TGF 蛋白的等电点接近中性。在 Bio-Gel P-30 上进行色谱分析,然后进行高压液相色谱分析,总纯化率达到 22,000 倍。在 EGF 存在下进行测定时,最纯化的蛋白质在 1 ng/ml 的软琼脂中具有诱导生长的活性。这些数据进一步证明了肿瘤形成可能是由非肿瘤生化过程的定量而非定性改变引起的。我们最近描述了 (1) 从几种肿瘤小鼠组织(包括由莫洛尼肉瘤病毒 (MSV) 转化的成纤维细胞和最初由化学致癌物诱导的可移植膀胱癌)中分离和表征一组低分子量、酸稳定性多肽(称为转化生长因子 (TGF))。这些多肽是可通过酸/乙醇提取的细胞内蛋白质。类似的细胞外转化多肽,称为肉瘤生长因子 (SGF),是由 De Larco 和 Todaro (2) 从培养的 MSV 转化小鼠成纤维细胞的条件培养基中首次分离出来的。最近报道了几种其他细胞外转化多肽,它们来源于人类 (3) 和动物 (4) 来源的肿瘤细胞。所有这些多肽在应用于培养的未转化、非肿瘤指示细胞时都会引起以下一系列变化,这些变化为 TGF 提供了一个操作性定义:(i) 单层细胞密度依赖性生长抑制的丧失;(ii) 单层细胞过度生长;(iii) 细胞形状改变,导致指示细胞呈现肿瘤表型;(iv) 获得锚定独立性,从而能够在软琼脂中生长。未转化的非肿瘤细胞不会在软琼脂中形成逐渐生长的菌落,并且培养细胞的这种不依赖锚定的生长特性与体内肿瘤的生长具有特别高的相关性(5-7)。
根结线虫(Meloidogyne spp。,rkn)是全球最具破坏性的内寄生虫线虫之一,通常导致作物生长和产量的降低。洞悉宿主-RKN相互作用的动力学,尤其是在不同的生物和非生物环境中,对于设计新型的RKN缓解措施可能是关键的。植物促进生长细菌(PGPB)涉及不同的植物生长增强活动,例如生物铜质化,病原体抑制和全身耐药性的诱导。我们总结了有关PGPB和非生物因素(例如土壤pH,质地,结构,水分等)作用的最新知识。在调节RKN-host相互作用中。rkn直接或间接地受到不同PGPB的影响,相互作用中的非生物因子相互作用以及对RKN感染的宿主反应。我们强调了(i)PGPB直接和间接影响RKN-宿主相互作用的三方(host-rkn-pgpb)现象; (ii)宿主对根际PGPB的选择和富集的影响; (iii)土壤微生物如何增强RKN寄生虫; (iv)宿主在RKN-PGPB相互作用中的影响,以及(v)非生物因子在调节三方相互作用中的作用。此外,我们讨论了不同的农业实践如何改变相互作用。最后,我们强调将三方互动知识纳入集成的RKN管理策略的重要性。