土壤健康状况恶化是实现农业可持续性的主要障碍之一。这种损失通常是由于采用不良的耕作方式和过度使用化学品(如化肥和杀虫剂)造成的(Kumar 等人,2017 年;Kumar 等人,2018 年)。阻止土壤质量恶化的一个潜在策略是在土壤或植物部位施用微生物接种剂(Banik 等人,2019 年)。如果我们要充分利用微生物的潜力,就必须了解微生物在植物-土壤系统的生物地球化学循环中以及在减少毒素、营养动力学、抗氧化活性、系统性诱导抗性、病原体抑制等过程中的作用(Govindasamy 等人,2008 年)。除了提高产品质量和环境健康外,这些相互作用还将减轻合成化学品和其他污染物的毒性。本期特刊涵盖了与土壤、植物和微生物之间关系相关的方面,以增强土壤健康和植物生长,这对于理解农业系统的可持续性特别有帮助。在本研究主题中,研究了园艺作物中植物疾病的流行情况和潜在的管理策略,包括番茄枯萎病、苹果再植病 (ARD) 和猕猴桃早期衰退综合症。猕猴桃早期衰退综合症的因素是由于气候条件和农艺土壤管理之间的相互作用而引发的。因此,适当管理这些条件可能有助于抑制猕猴桃早期衰退综合症(Bardi 等人)。而当向土壤中添加 ZnO-NPs 时,通过创建有利于植物生长的新微生物群落结构可以克服 ARD 疾病(Pan 等人)。另一方面,Chaturvedi 等人强调了应用细菌内生菌联合体保护番茄光合系统免受枯萎病侵害。根际和内生有益微生物在促进植物生长和改善土壤健康方面发挥着至关重要的作用。根际微生物改善
doi:https://doi.org/10.22271/j.ento.2023.v11.i6a.9261抽象的植物植物 - 寄生虫线虫是全球12.3%(1570亿美元)的收益率损失最高的原因,全球和21.3%(158亿美元)(158亿美元)。合成nematicides对环境和公共卫生的不利影响促使对管理线虫的非化学方法进行了重新评估。一种这样的方法是生物耗尽,其中,新鲜的植物生物量被掺入土壤中,并用聚乙烯覆盖了两到三周,以抑制土壤传播的害虫和病原体。生物植物的机制是由于葡萄糖酸盐水的水解释放,葡萄糖酸的水解释放,葡萄糖醇的水解属于铜绿,漫画科和卡帕拉辛的植物中。非包质植物的挥发性线虫拮抗化合物的产生扩大了生物量的范围。这些化合物抑制线虫运动,削弱宿主的发现能力,也可能引起卵巢效应。生物肿瘤可有效控制真菌病原体和杂草,改善土壤特性并增强有益的土壤微生物。然而,该方法有一些局限性,例如淡淡的植物生物量在干燥的土壤和较深层的土壤中不可用。在存在生物剂量的情况下,也可以减少有益的昆虫致病线虫。但是,该技术可以成本效率地包括在综合线虫管理中,以获得可接受的线虫管理水平。由于非特异性疾病症状,它们也被称为植物的“看不见的敌人”,并且经常被忽视。关键词:铜氨基科,植物 - 寄生虫线虫,异硫氰酸盐和葡萄糖素酸盐引入植物寄生虫或PPN,是小的显微镜round虫,主要形成与宿主的强制性寄生虫键。由于PPN更适合各种农业气候区域,因此它们在所有种植系统中都是高度多样化和无处不在的。每年,园艺作物的损失百分比约为21.3%,估计为102,0.3979亿卢比(15.8亿美元);估计有198万卢比的50,2224.98亿卢比,估计有198.98亿卢比的198万卢比,造成了十九种园艺作物(香蕉,柑橘,葡萄,瓜瓦,木瓜,木瓜,石榴,苦瓜,胡萝卜,辣椒,辣椒,辣椒,番茄,番茄,番茄,奶油,番茄和土豆)的损失。,如果是十种田间作物(玉米,大米,鹰嘴豆,蓖麻,小麦,黑克,绿色克,葵花籽,黄麻和花生),则为卢比。51,8181万(Kumar等,2020)[17]。 政府法规由于对环境的有害影响而逐渐消除了合成化学物质的使用(Warnock等,2017)[34]。 由于各个国家 /地区的州和中央层面的繁琐注册标准,通过熏蒸或非肿胀方法的线虫管理正在不断变化。 因此,有效管理对于确保作物生产和最大收益至关重要。 使用对植物寄生线虫对植物寄生线虫的生物摄影剂就是这样的策略。 在17世纪初,观察到葡萄糖醇(GSL)和异硫氰酸酯(ITC)的独特性能。 GSL和ITC是生物量度中的关键活性化合物。51,8181万(Kumar等,2020)[17]。政府法规由于对环境的有害影响而逐渐消除了合成化学物质的使用(Warnock等,2017)[34]。由于各个国家 /地区的州和中央层面的繁琐注册标准,通过熏蒸或非肿胀方法的线虫管理正在不断变化。因此,有效管理对于确保作物生产和最大收益至关重要。使用对植物寄生线虫对植物寄生线虫的生物摄影剂就是这样的策略。在17世纪初,观察到葡萄糖醇(GSL)和异硫氰酸酯(ITC)的独特性能。GSL和ITC是生物量度中的关键活性化合物。GSL和ITC是生物量度中的关键活性化合物。生物耗尽生物量的历史是将新鲜植物生物量纳入土壤的过程,该过程通过释放几种化学物质来破坏土壤传播的病原体和害虫(Kirkegaard等,1993)[15]。有机物生物降解期间释放的挥发性化合物的熏蒸作用抑制了植物病原体(Buena等,2007)[6]。
《基因技术(精准育种)法案》——动物福利问题 由专业/科学组织和个人联盟支持的公开声明 《基因技术(精准育种)法案》为我们提供了一个重要的机会,利用我们对基因科学的进一步了解,帮助开发更好的解决方案,以应对紧迫的全球挑战,即食品和营养安全、人类和动物健康、气候变化和自然资源保护。精准育种技术在应对这些挑战方面的潜在优势既适用于农场动物,也适用于农业和园艺作物。因此,我们完全支持将动物纳入法案条款。在考虑法案的潜在影响,特别是影响农场动物健康和福利的问题时,讨论必须集中在法案条款上,并基于有关现代牲畜育种和生产的最新信息。该法案并不寻求以任何方式取代或改变现有的农场动物福利法规或对早期实验室研究的法定控制。这些规则将继续以与传统养殖牲畜相同的方式适用于精准养殖动物。此外,该法案还提供了具体的福利保障措施,以确保精准育种技术的使用不会对动物福利产生负面影响。虽然目前正在养殖动物中开发的大多数基因编辑应用都侧重于改善福利,例如通过提高抗病能力或减少扑杀的需要,但我们承认并支持该法案引入相称且基于证据的福利保障措施,以提供透明度和公众保证,并确保立法的未来发展。一些动物福利组织声称英国农场的健康和福利标准很差且不断恶化,而基因编辑等技术将使情况变得更糟,但事实并非如此。英国农场的动物福利标准是世界上最高的,有证据表明,无论是在放养密度、抗生素使用、活体运输、住房条件、生物安全还是培训方面,发展方向都是积极的和不断改善的,如以下示例所示:
Carl H. Beckman综合卷,题为“植物的枯萎病的性质”。 卡尔·H·贝克曼(Carl H. Beckman)于1923年5月9日出生于RI的克兰斯顿。 在第二次世界大战期间在美国武装部队服役后,他参加了罗德岛大学的布伦南·瓦尔南(Uni-Eileen Brennan Versity),在那里他获得了学士学位。 学位在1947年。 艾琳·布伦南(Eileen Brennan)专注于空中博士学位。在过去40年中,植物污染学位是植物病理学的压力限制了植物病理学。 在这段时间里,威斯康星州的橡树博士的研究在Drs的指导下对Wilt进行了研究。 A。J.包括Riker和J. E. Kuntz在内的所有主要空气污染物都启动了他的臭氧,二氧化硫,氢氢对血管枯萎病的兴趣,过氧乙酰硝酸盐和酸性疾病。 完成了他的毕业生雨后。 此外,Brennan博士进行了研究,贝克曼博士返回了所研究的许多次要污染物,罗德岛大学,除了包括氯气,乙烯包括1960年代的五年时期,当时他加入了中央研究空气污染物和醛。 联合水果公司的实验室博士专注于布伦南及其同事,已经展示了香蕉的枯萎。 这些在贝克曼博士的研究成就已致力于阐明80篇卷积的期刊文章。 复杂的一系列相互作用的生物化学和生理学博士Brennan博士具有真正的科学本能和敏锐的事件力量,并且在观察后发生了伴随的结构变化。 血管枯萎。Carl H. Beckman综合卷,题为“植物的枯萎病的性质”。卡尔·H·贝克曼(Carl H. Beckman)于1923年5月9日出生于RI的克兰斯顿。在第二次世界大战期间在美国武装部队服役后,他参加了罗德岛大学的布伦南·瓦尔南(Uni-Eileen Brennan Versity),在那里他获得了学士学位。学位在1947年。艾琳·布伦南(Eileen Brennan)专注于空中博士学位。在过去40年中,植物污染学位是植物病理学的压力限制了植物病理学。在这段时间里,威斯康星州的橡树博士的研究在Drs的指导下对Wilt进行了研究。A。J.包括Riker和J. E. Kuntz在内的所有主要空气污染物都启动了他的臭氧,二氧化硫,氢氢对血管枯萎病的兴趣,过氧乙酰硝酸盐和酸性疾病。完成了他的毕业生雨后。此外,Brennan博士进行了研究,贝克曼博士返回了所研究的许多次要污染物,罗德岛大学,除了包括氯气,乙烯包括1960年代的五年时期,当时他加入了中央研究空气污染物和醛。联合水果公司的实验室博士专注于布伦南及其同事,已经展示了香蕉的枯萎。这些在贝克曼博士的研究成就已致力于阐明80篇卷积的期刊文章。复杂的一系列相互作用的生物化学和生理学博士Brennan博士具有真正的科学本能和敏锐的事件力量,并且在观察后发生了伴随的结构变化。血管枯萎。在她的整个职业生涯中,她奠定了新的基础,植物感染了血管枯萎病原体,尤其是由于她对研究和令人难以置信的发现感的热情而引起的。镰刀菌和黄虫属内的土壤生物真菌。在1969年,布伦南博士在植物病理学中报道了虽然血管枯萎病长期以来对感染病毒感染的叶子的破坏性比全世界健康的许多作物都更耐受臭氧,但血管枯萎病的机制。这是同类文章的第一篇文章,并且在其他机构的其他出版物的贝克曼博士(Beckman)博士证实了35年前发起的研究计划时,就无法理解发病机理。病毒与臭氧之间的相互作用很少。本文有助于建立植物范围内发生的相互作用,以发展对重要性血管结构的欣赏。贝克曼博士揭示了生物/非生物空气污染相互作用的许多关键事件,这一区域仍在确定血管感染后的耐药性或易感性。他开发了一种广泛的抵抗机制模型,在她的整个职业生涯中,布伦南博士允许她的科学遵循初步感染。这些涉及诱捕和本地化的好奇心,引导她,不受血管凝胶的政治压力和孢子的束缚,刺激血管实质偏见。她在1960年代推测醛可能是形成泰糖的有毒细胞,并将酚类物质输注到园艺作物中。Brennan博士在这些结构中进行了实验,从而导致被感染区域密封。她通过暴露于植物上的野外症状,他表明在受控条件下,易感植物中发生了相同的过程。被查看了工作,但在这些情况下,病原体将当时的序列破坏为较小的污染物的效果,但如今的反应并能够通过植物系统地传播。碳氢化合物等碳氢化合物的毒性得到了更好的赞赏,他的工作也有助于解释水压力的原因,并为空气研究的新分支和在污染效应中产生的水压力症状的表达提供了基础。Brennan博士的成就已得到认可,贝克曼博士工作的许多重大贡献是科学界的时代,这是她对美国环境保护署和反应的感染参与时间和空间方面的重视所证明的。将注意力集中在科学顾问委员会的特定位置上。Brennan博士曾是对感染过程至关重要的会员场所,并强调了行政和生态委员会的强调,并且最近在这些地点顾问的顾问中,这些事件的重要性是董事会清洁空气科学咨询的顾问。阻力反应的成功或失败。她的血管枯萎病发病机理,并为未来工作空气杂志的编辑委员会提供了方向的基础。这项工作帮助布伦南博士担任秘书/司库,副总统,并统一了与1975年至1977年与APS东北部门总统有关的思想多样性。 div>。 div>污染控制协会,森林科学杂志和贝克曼博士曾在植物疾病记者的编辑委员会任职。在1988年,她被评为植物病理学,生理植物病理学和APS出版社,空气污染控制协会。是“植物真菌枯萎病”和“植物病理学教授基本植物疾病”的男女同伊,他对植物血管枯萎病的研究和控制表示敬意。”他的职业通过她的承诺和成就。,她在枯萎病领域的领域占有优势,该服务社区,她的州和她的国家与APS专着和审查委员会一起选择了他的杰出服务,该服务进一步了解了空气,以修订和更新J. C. Walker博士的专着,“ Fusarium污染问题,” Fusaumium污染问题,并向植物造成了植被的危险。”后来将这项工作扩展为更清洁环境的目标。