问题更加复杂的是,对成本效益的日益关注推动了提高所供应浆料浓度的趋势 • 更高的浆料浓度需要特殊的混合和处理程序 • 更高的固体浓度可能导致更高程度的分层和额外的预混合要求 • 更高的固体和化学浓度可能会影响浆料的保质期 • 增加稀释率需要更精确的 SDS 混合设备
咸水地下水也是重要的水源,可以提供新的水源并有助于减少对淡水供应的需求。在本报告中,咸水地下水被视为总溶解固体浓度在 1,000 至 10,000 毫克/升范围内的地下水。美国有 406 家市政咸水地下水淡化厂,其中大部分位于佛罗里达州(40%)、加利福尼亚州(14%)和德克萨斯州(13%)(Mickley,2018 年)。2003 年,德克萨斯州估计有超过 815 万亿加仑(25 亿英亩英尺)的咸水可用(LBG-Guyton Associates,2003 年)。截至 2024 年,已完成的咸水含水层研究表明,31 个主要和次要含水层中的 12 个含水层的总原地咸水地下水储量为 1,000 万亿加仑(32 亿英亩英尺)。这些体积计算方法之间的主要差异详见第 4.5 节。
含有氧化石墨烯(GO)纳米片的蒸发球形水滴的时间相关形状,用于不同的固体浓度,湿度水平和pH。滴坐在从中占据的超疏水表面。确定了三个不同的蒸发阶段:滴界面的各向同性回缩,在流体界面积累的颗粒的壳屈曲,以及在恒定壳形状下屈曲壳的收缩。报告了酸性和碱性滴之间的明显差异。有人认为,此特征是由GO颗粒的pH依赖性界面吸附引起的。对于GO浓度的中间值,可以获得具有非常可重复的折叠模式的干燥胶囊,其模式数与惯性,线性弹性壳模型预测的胶囊兼容。当在水中重新分散时,酸性滴的干胶囊比基本滴的胶囊更好地保持其形状。
在 2021 年临时战略中,EGLE 使用 150 微克/千克 (μg/kg) 的全氟辛烷磺酸 (PFOS) 作为生物固体被视为受工业影响的阈值(有关更多信息,请参阅 2021 年临时战略文件)。EGLE 最初在 2017 年使用此阈值来禁止将六个 WWTP 的生物固体用于土地。下表 1 显示了 2017 年和 2018 年六个 WWTP 的生物固体浓度,以及 2021 年同一设施的相应浓度。在 2021 年提交生物固体数据的 162 家设施中,只有一家 WWTP 的生物固体中 PFOS 浓度超过 150 μg/kg。该污水处理厂是 2018 年被确定为含有受工业影响的生物固体的六个污水处理厂之一。通过实施 IPP PFAS 计划要求的源头削减措施,该污水处理厂已于 2021 年初成功将其生物固体中的 PFOS 浓度降低至 74 μg/kg。然而,在 2021 年秋季,该处理厂再次暴露于 PFAS 源,浓度增加至 180 µg/kg。通过额外的源头削减措施,源头已得到控制,目前正在对受影响的生物固体进行替代处置。
生菜是一种易于生长且营养丰富的多叶蔬菜。它使用静态水培系统生长良好,可节省空间并且易于维护。但是,了解pH对静态水培系统中生菜生长的影响是有限的。因此,进行了这项研究,以确定pH养分溶液对静态水培系统中生长的生长性能和饮食质量的影响。生菜在pH 5.2、6.2和7.2营养溶液中生长。每周收集其生长性能,包括植物高度,根长,叶子数,叶子面积,叶叶绿素含量,总干重和总水分含量。在移植后的第四周之前,分析了收获的生菜,以分析结实,可溶性固体浓度,可滴定酸度,pH和抗坏血酸含量。植物高度,根长,叶子数,叶子面积和生菜的总干重受到养分溶液pH和移植后几周之间相互作用的影响。移植后的第三周,在pH 6.2中生长的生菜比在pH 7.2和5.2营养溶液中分别高出11.12和18.67%。在移植后的第四周之前,pH 6.2中生长的生菜的牢固性明显高于pH 5.2和7.2营养溶液中生长的生菜的牢固性。
简介 通过分析现场水样可以确定水体内的悬浮固体浓度 (SSC)。尽管这种方法可以得到准确的测量结果,但是结果是基于点的,并且仅在有限数量的采样位置可用。如果必须将测量结果在较大的区域进行空间外推,则可能会引入相当大的误差 (Nanu 和 Robertson,1990)。通过增加采样密度可以提高估算的 sscs 的准确性,这使该方法过于耗时且成本高昂。但是,如果与遥感数据相结合,这种现场采样方法对于量化 ssc 和研究其在水体内的空间分布模式非常有用。能否准确地从遥感数据量化 SSc 取决于数据中记录的 ssc 与其反射率之间的相关性。如果 ssc 小于 100 mgl-I,则在可见光和近红外波长范围内,这两个变量之间存在正相关性(Forster 等,1994;Lyon 等,1988;Mertes 等,1993;Ritchie 和 Cooper,1988;Tassan,1993)。如果 ssc 较低且范围较小(20 至 50 mgl-I),则这两个变量之间的关系为非线性(例如对数)(Xia,1993)。遥感数据中 ssc 与其数字值 (DN) 之间已建立的关系受多种因素的影响,例如波长、视角和
施用生物固体可以提高土壤肥力和作物产量,但也伴随着重金属和抗生素引入的风险。在重金属污染环境下,利用丛枝菌根真菌 (AMF) 是一种有效的策略,可以增强土壤微生物群落稳定性和植物对重金属的耐受性,并减少抗生素抗性基因 (ARG) 的传播。本研究通过盆栽试验探究了接种 AMF 对土壤和植物重金属含量以及土壤微生物群落的影响。结果表明,接种 AMF 显著提高了植物生物量,并降低了土壤和植物重金属含量。虽然接种 AMF 不会改变细菌和真菌群落的组成,但在较高的生物固体浓度下,它增加了细菌的多样性。值得注意的是,接种 AMF 增强了微生物网络的复杂性,并增加了关键类群的丰度。此外,在接种 AMF 的土壤中,一些对重金属具有高抗性的有益微生物得到了富集。宏基因组分析显示,与未接种AMF的土壤相比,接种AMF的土壤中移动遗传元件(MGE)基因IS91减少,重金属抗性基因增加。MGE介导的耐药基因(ARG)扩散减少的可能性是本研究的主要发现之一。需要注意的是,本研究还检测到接种AMF的高生物固体改良土壤中少数耐药基因的富集。总体而言,接种AMF可能是一种有效的农业策略,可以减轻与生物固体、重金属和抗生素耐药性相关的环境风险,从而促进可持续的土壤管理和健康。