摘要。固氮微生物(固氮菌)通过将氮气还原为生物可利用氮,显著影响海洋生产力。最近,非蓝藻固氮菌(NCD)已被确定为海洋固氮的重要贡献者。其中,Gamma A 是研究最深入的海洋 NCD 之一,因为它无处不在;然而,控制其分布的因素仍然未知。特别是,微型浮游动物摄食作为自上而下控制的重要性尚未得到检验。在本研究中,我们使用 nifH 扩增子测序研究了固氮菌群落结构,并使用稀释实验和定量聚合酶链反应(PCR)相结合的方法量化了 Gamma A 的生长和微型浮游动物摄食死亡率,地点位于日本南部海岸黑潮北缘光照充足的水域。在研究区域,Gamma A 普遍存在并在固氮菌群落中占主导地位,而蓝藻固氮菌的相对丰度较低。Gamma A 的微型浮游动物摄食率明显高于整个浮游植物群落,并且通常与其生长率保持平衡,这表明 Gamma A 可以有效地将固定氮转移到更高的营养级。尽管 Gamma A 的生长率对营养物添加没有表现出明显的反应,但 Gamma A 的丰度与营养物浓度和微量元素含量有显著的关系。
海洋溶解有机磷 (DOP) 库主要由 P 酯组成,此外还有同样丰富的膦酸盐和 P 酐分子(数量较少)。在磷酸盐有限的海洋区域,固氮菌被认为依赖 DOP 化合物作为磷 (P) 的替代来源。虽然 P 酯和膦酸盐都能有效促进氮 (N 2 ) 固定,但 P 酐对固氮菌的作用尚不清楚。在这里,我们探讨了 P 酐对两个生物地球化学条件形成鲜明对比的站点的 N 2 固定的影响:一个位于汤加海沟火山弧地区(“火山”,磷酸盐含量低、铁浓度高),另一个位于南太平洋环流(“环流”,磷酸盐含量中等、铁含量低)。我们用 AMP(P 酯)、ATP(P 酯和 P 酐)或 3polyP(P 酐)培养表层海水,并确定了 Crocosphaera 和 Trichodesmium 中细胞特定的 N 2 固定率、nifH 基因丰度和转录。Trichodesmium 对添加的任何 DOP 化合物均无反应,这表明它们在火山站不受 P 限制,并且在环流站被低铁条件击败。相反,Crocosphaera 在两个站都数量众多,它们的特定 N 2 固定率在火山站受到 AMP 的刺激,在两个站受到 3polyP 的轻微刺激。尽管磷酸盐和铁的可用性形成对比,但两个站的异养细菌对 ATP 和 3polyP 添加的反应相似。 Crocosphaera 和异养细菌在低磷酸盐浓度和中等磷酸盐浓度下使用 3polyP 表明,这种化合物除了是 P 的来源外,还可用于获取两个群体竞争的能量。因此,P-酸酐可能会在未来分层和营养贫乏的海洋中利用能量限制来限制固氮菌。