4AOP 自动大气吸收图集业务版本 6SV1 太阳光谱中卫星信号的第二次模拟,版本 1 ASCII 美国信息交换标准代码 ANOVA 方差分析 ASTER 先进星载热发射和反射辐射计 BRDF 双向反射分布函数 CASI 紧凑型机载光谱成像仪 CDOM 有色溶解有机物 CRTM 社区辐射传输模型 CNES 法国国家空间研究中心 CRTM 社区辐射传输模型 CRTM 社区辐射传输模型 CZCS 沿海区彩色扫描仪 ENVISAT 环境卫星 ESA 欧洲航天局 FOV 视场 GDAL 地理空间数据抽象库 GIS 地理信息系统 GPS 全球定位系统 GRASS 地理资源分析支持系统 GRETL GNU 回归、计量经济学和时间序列库 HCMR 希腊海洋研究中心 GUI 图形用户界面 HyMap高光谱测绘仪 ILWIS 综合陆地和水域信息系统 iPAQ internet CompAQ 出品的掌上电脑 KOPRA Karlsruhe 优化和精确辐射传输算法 LAD 最小绝对偏差 LAI 叶面积指数 Landsat TM Landsat 专题测绘仪 Landsat ETM+ Landsat 增强专题测绘仪 Plus MERIS 中等分辨率成像光谱仪 MIPAS 用于被动大气探测的迈克尔逊干涉仪 MODIS 中分辨率成像光谱辐射计 NASA 美国国家航空航天局
Adnan AL RAIS 阿联酋穆罕默德·本·拉希德航天中心(MBRSC)空间运营与探索部门助理总干事 Márcia ALVARENGA DOS SANTOS 巴西空间局(AEB)国际合作办公室主任 GK ANANTHASURESH 印度科学研究所机械工程系,班加罗尔,印度 Pakorn APAPHANT 泰国地理信息和空间技术发展局(GISTDA)执行董事 Dunay BADIRKHANOV Azercosmos 副主席,阿塞拜疆 Stephanie BEDNAREK SpaceX 商业销售副总裁,美国 Pierre W. BOUSQUET 法国国家空间研究中心(CNES)行星学和微重力项目办公室主任 Marco BRANCATI 意大利 Telespazio 首席技术官 Michal BRICHTA 斯洛伐克投资贸易发展署斯洛伐克空间办公室工业分部主任,斯洛伐克 David CAPONIO VAST 产品和业务开发高级副总裁,美国 Bruce CHESLEY 教学科学与技术公司高级助理,美国 Mario COSMO 意大利航天局(ASI)科学与创新总监,意大利 Rebekah DAVIS REED 美国国家航空航天局(NASA)探索系统发展任务理事会(ESDMD)国际一体化负责人,美国 Rosa Ma DEL REFUGIO RAMÍREZ DE ARELLANO Y HARO 墨西哥航天局(AEM)国际事务和空间安全事务总协调员,墨西哥 Steve DURST 国际月球观测协会(ILOA)主任,美国 Reinhold EWALD 斯图加特大学宇航员和宇航学教授,太空探索者协会(ASE)主席,德国
Pierre OMALY (CNES) 由法国国家空间研究中心 (CNES) 牵头的“太空关怀技术” (T4SC) 计划在实施法国新的太空运营法规方面发挥着关键作用。这些法规对发射器和太空物体的设计、制造和操作提出了更严格的要求,旨在提高太空运营安全性,最大限度地降低对公众和环境的风险,并减少太空垃圾的产生。T4SC 与这些目标完美契合,它提供了一套技术解决方案和实用工具,帮助航天业利益相关者满足新的监管要求。关键创新包括:Detumbler:一种专利设备,用于稳定故障航天器,便于恢复。EOLTS:一种精确的定位系统,用于进行明智的机动,使用微型信标准确跟踪卫星。3D 打印防护罩:一种轻质、耐用的防护罩,可保护卫星免受微流星体撞击。EPASS:一种安全放电报废卫星电池的系统。超敏捷推进:水基推进系统使小型卫星能够执行精确的防撞操作。RFID 标签:一种从地球快速识别卫星的技术。除了技术进步之外,T4SC 还促进公共和私人太空参与者之间的合作,组织年度研讨会以应对太空交通管理和环境保护方面的共同挑战。总之,CNES 的 T4SC 计划在促进新法国太空法规的应用方面发挥了重要作用。通过创新技术、实用工具和协作努力,T4SC 为更安全、更可持续和更负责任的法国太空部门做出了贡献。
1 波尔多大学天体物理学实验室波尔多,法国国家科学研究中心,佩萨克,法国 2 法国国家科学研究中心天体物理学和行星研究所,法国图卢兹,UPS,法国国家空间研究中心 电子邮件:benoit.lavraud@irap.omp.eu 3 AKKA,法国图卢兹 4 捷克布拉格查尔斯大学数学与物理学院表面与等离子体科学系 5 大学学院 Mullard 空间科学实验室London, Holmbury St. Mary, Dorking, Surrey, UK 6 INAF-Istituto di Astrofisica e Planetologia Spaziali, Via Fosso del Cavaliere 100, 00133 Roma, Italy 7 西南研究所,圣安东尼奥,美国 8 德克萨斯大学圣安东尼奥分校物理与天文学系,圣安东尼奥,德克萨斯州,美国 9 Laboratoire de Physique des Plasmas, Ecole法国帕莱索理工学院 10 系密歇根大学气候与空间科学与工程系,美国安娜堡 11 伦敦帝国理工学院 Blackett 实验室空间与大气物理学系,英国伦敦 12 法国奥尔良大学 LPC2E,法国国家科学研究中心,法国奥尔良 13 法国默东 LESIA 14 意大利卡拉布里亚大学物理系,意大利伦德 15 意大利航天局 ASI,意大利罗马 16 美国加州大学伯克利分校空间科学实验室 17 西班牙穆尔西亚穆尔西亚大学 18 瑞典斯德哥尔摩 KTH 19 美国新罕布什尔大学空间科学中心,新罕布什尔州达勒姆 03824 20 欧洲空间局 (ESA),欧洲空间天文学中心 (ESAC),西班牙马德里 Villanueva de la Cañada,Camino Bajo del Castillo s / n,28692
MMX(火星卫星探测)是日本宇宙航空研究开发机构 (JAXA)、法国国家空间研究中心 (CNES) 和德国航空航天中心 (DLR) 的机器人采样返回任务,计划于 2024 年发射。该任务旨在解答火卫一和火卫二的起源问题,这也有助于了解太阳系早期的物质运输,以及水是如何被带到地球的。除了负责采样和样品返回地球的 JAXA MMX 母舰外,CNES 和 DLR 还建造了一辆小型火星车,用于降落在火卫一上进行现场测量,类似于龙宫上的 MASCOT(移动小行星表面侦察车)。MMX 火星车是一个四轮驱动的自主系统,尺寸为 41 厘米 x 37 厘米 x 30 厘米,重约 25 公斤。火星车车身上集成了多种科学仪器和摄像机。火星车车身呈矩形盒状。侧面连接着四条腿,每条腿上有一个轮子。当火星车与母舰分离时,腿会折叠在一起,放在火星车车身的侧面。当火星车被动着陆(没有降落伞或制动火箭)在火卫一上时,腿会自动移动,使火星车保持直立状态。火卫一的一个白天相当于 7.65 个地球小时,在为期三个月的总任务时间内,会产生大约 300 个极端温度循环。这些循环和昼夜之间较大的表面温度跨度是火星车的主要设计驱动因素。本文详细介绍了 MMX 火星车运动子系统的开发
a 天体生物学中心 (CAB),CSIC-INTA,Carretera de Ajalvir km 4, 28850, Torrej ´ on de Ardoz,马德里,西班牙 b 天体生物学 OU,科学、技术、工程和数学学院,开放大学,米尔顿凯恩斯,英国 c 路易斯安那州立大学地质与地球物理系,路易斯安那州巴吞鲁日,美国 d 天体生物学研究组,航空航天医学研究所,DLR,科隆,德国 e LESIA,巴黎天文台,CNRS,PSL Univ.,92195,Meudon Cedex,法国 f 生物医学问题研究所,123007,Khoroshevskoye shosse 76a,莫斯科,俄罗斯 g 巴黎东大学和巴黎城大学,CNRS,LISA,F-94010,Cr ´ eteil,法国 h阿联酋航天局,阿拉伯联合酋长国 i 美国宇航局总部,华盛顿特区,20546,美国 j 南特大学、昂热大学、勒芒大学、法国国家科学研究院,UMR 6112,行星地球科学和地球科学实验室,F-44000,南特,法国 k 神户大学行星学系,657-8501,神户,日本 l 欧洲航天局 (ESA) - ESTEC 独立安全办公室 (TEC-QI) 行星保护官员,Keplerlaan 1, 2201,AZ,诺德维克,荷兰 m 东京大学地球与行星科学系,东京都文京区本乡 7-3-1,113-0033,日本 n 印度空间研究组织总部副主任 o 欧洲航天局 (ESA) – ESTEC,Keplerlaan 1, 2201,AZ,诺德维克,荷兰 p 联合国维也纳办事处外层空间事务厅政策和法律事务科委员会,奥地利 q 日本宇宙航空研究开发机构(JAXA),宇宙航行科学研究所(ISAS),日本神奈川 r 俄罗斯科学院空间研究所行星物理系,俄罗斯莫斯科 s 康奈尔大学,伊萨卡,纽约州,14853-6801,美国 t 中国国家航天局,北京,中国 u 意大利航天局(ASI),意大利罗马 v 法国国家空间研究中心(CNES),法国 w 中国空间技术研究院神舟航天生物技术集团空间微生物实验室,北京,中国
a 天体生物学中心 (CAB),CSIC-INTA,Carretera de Ajalvir km 4, 28850, Torrej ´ on de Ardoz,马德里,西班牙 b 天体生物学 OU,科学、技术、工程和数学学院,开放大学,米尔顿凯恩斯,英国 c 路易斯安那州立大学地质与地球物理系,路易斯安那州巴吞鲁日,美国 d 天体生物学研究组,航空航天医学研究所,DLR,科隆,德国 e LESIA,巴黎天文台,CNRS,PSL Univ.,92195,Meudon Cedex,法国 f 生物医学问题研究所,123007,Khoroshevskoye shosse 76a,莫斯科,俄罗斯 g 巴黎东大学和巴黎城大学,CNRS,LISA,F-94010,Cr ´ eteil,法国 h阿联酋航天局,阿拉伯联合酋长国 i 美国宇航局总部,华盛顿特区,20546,美国 j 南特大学、昂热大学、勒芒大学、法国国家科学研究院,UMR 6112,行星地球科学和地球科学实验室,F-44000,南特,法国 k 神户大学行星学系,657-8501,神户,日本 l 欧洲航天局 (ESA) - ESTEC 独立安全办公室 (TEC-QI) 行星保护官员,Keplerlaan 1, 2201,AZ,诺德维克,荷兰 m 东京大学地球与行星科学系,东京都文京区本乡 7-3-1,113-0033,日本 n 印度空间研究组织总部副主任 o 欧洲航天局 (ESA) – ESTEC,Keplerlaan 1, 2201,AZ,诺德维克,荷兰 p 联合国维也纳办事处外层空间事务厅政策和法律事务科委员会,奥地利 q 日本宇宙航空研究开发机构(JAXA),宇宙航行科学研究所(ISAS),日本神奈川 r 俄罗斯科学院空间研究所行星物理系,俄罗斯莫斯科 s 康奈尔大学,伊萨卡,纽约州,14853-6801,美国 t 中国国家航天局,北京,中国 u 意大利航天局(ASI),意大利罗马 v 法国国家空间研究中心(CNES),法国 w 中国空间技术研究院神舟航天生物技术集团空间微生物实验室,北京,中国
1 巴黎天文台空间与天体物理学仪器实验室,PSL 大学,巴黎大学国家科学研究中心,法国巴黎, 2 联合国维也纳办事处外层空间事务办公室政策和法律事务科委员会,维也纳,奥地利, 3 路易斯安那州立大学地质和地球物理系,巴吞鲁日,美国洛杉矶,4 阿拉伯联合酋长国航天局,阿拉伯联合酋长国阿布扎比,5 意大利航天局,意大利罗马,6 日本宇宙航空研究开发机构空间与宇航员研究所。科学(ISAS),日本神奈川县相模原市,7 法国南特大学行星学和地球科学实验室,8 美国国家航空航天局,美国国家航空航天局总部,华盛顿特区,9 康奈尔天体物理和行星科学中心,康奈尔大学天文系,纽约州伊萨卡,美国,10 俄罗斯联邦国家研究中心生物医学计划研究所,俄罗斯科学院,莫斯科,11 印度空间研究组织,印度班加罗尔,12 加拿大航天局,加拿大魁北克省隆格伊圣于贝尔机场路,13 法国巴黎国家空间研究中心,14 英国米尔顿凯恩斯开放大学科学技术、工程和数学学院天体生物学,15 中国国家航天局,北京,16居住性,天体生物学中心 (CSIC-INTA),托雷洪德阿尔多斯,马德里,西班牙,17 巴黎东克雷泰伊大学和巴黎西岱大学大气系统实验室,法国国家科学研究院,克雷泰伊,法国,18 德国航空航天中心 (DLR),航空航天医学研究所,放射生物学系,天体生物学研究组,科隆,德国,19 欧洲空间局,ESTEC,诺德维克,荷兰,20 东京大学研究生院地球与行星科学系,日本东京,21 中国空间技术研究院神舟航天生物技术集团空间微生物学实验室,中国北京,22 俄罗斯科学院空间研究所行星物理系,俄罗斯莫斯科
a 路易斯安那州立大学地质与地球物理系,路易斯安那州巴吞鲁日,美国 b 康奈尔大学,纽约州伊萨卡,14853-6801,美国 c 南特大学,法国南特 d LESIA,巴黎天文台,PSL 大学,CNRS,巴黎大学,92195,法国默东 Cedex e 天体生物学中心 (CAB),CSIC-INTA,28850,Torrej ´ on de Ardoz,马德里,西班牙 f 委员会,政策和法律事务科,联合国维也纳办事处外层空间事务处,奥地利 g 阿联酋航天局,阿布扎比,阿联酋 h 意大利宇宙航空研究开发机构 (ASI),罗马,意大利 i 日本宇宙航空研究开发机构 (JAXA),宇宙航行科学研究所 (ISAS),日本神奈川 j 安全和任务保障办公室,美国国家航空航天局总部,华盛顿特区,20546,美国 k 约克大学,加拿大多伦多 l 法国国家空间研究中心 (CNES) m 天体生物学 OU,英国米尔顿凯恩斯开放大学科学、技术、工程和数学学院 n 中国国家航天局,中国北京 o 印度空间研究组织,印度班加罗尔 p 德国航空航天中心 (DLR),航空航天医学研究所,放射生物学系,天体生物学研究组,51147,科隆,德国 q 欧洲空间局,ESA-ESTEC,荷兰诺德维克 r 俄罗斯科学院生物医学问题研究所,俄罗斯莫斯科 s 巴黎东大学和巴黎城大学,CNRS,LISA,F-94010,法国 t 东京大学地球与行星科学系,东京都文京区本乡 7-3-1,113-0033,日本 u中国空间技术研究院神舟航天生物技术集团空间微生物学系,中国北京 v 加拿大蒙特利尔麦吉尔大学自然资源科学系 w 俄罗斯科学院空间研究所行星物理系,俄罗斯莫斯科 x 美国新罕布什尔州汉诺威达特茅斯学院塞耶工程学院
摘要 ArianeWorks 是由法国国家空间研究中心和阿丽亚娜集团发起的创新平台,它加速了 Themis 的开发,Themis 是一种由液氧和生物甲烷推动的低成本可重复使用的火箭级演示器,为 2030 年的欧洲发射系列铺平了道路。根据其股东的生态设计愿景,ArianeWorks 在 Themis 计划中启动了生态设计战略的实施。在此背景下,本研究介绍了基于半可重复使用发射器的发射服务的生命周期评估,该发射器源自 Themis 并在圭亚那航天中心运行,该评估发生在 Themis 的早期设计阶段。该分析意味着开发一个特定的框架来解释下级的可重复使用性,需要使用经过调整的功能单元、在生命周期中引入新的阶段以及特定的参数化来描述其复杂性。本文接着进行了敏感性分析,以确定影响的主要驱动因素并支持设计权衡分析,然后估计最大可信缓解潜力。然后,概述了一种评估可重复使用性可能带来的环境效益的方法,并为所研究的发射服务提供了初步结果。影响评估结果证实,结构和推进剂的生产对阿丽亚娜火箭的生命周期影响最大。由于延长寿命阶段会产生额外影响,因此低级火箭的回收和翻新也发挥着重要作用,但也使一些影响减少成为可能,这些影响可以通过明确的惯例来隔离。跨大西洋运输阶段或测试和加油期间的推进剂消耗会造成不可忽略的影响,这些影响可以通过采用节俭的方法或技术创新来减轻。总体而言,该研究强调,与基线相比,对气候变化和资源枯竭的总影响可能减少约 30-80%。然而,尽管人们普遍认为可重复使用性可以减少生命周期影响,但研究表明,实际情况要复杂得多,因为从发射器的环境性能比较中得出的结论取决于惯例、市场参数、运营方案和环境影响类别。对于所研究的发射服务,结果表明,虽然可重复使用性可能会减少对资源枯竭的影响,但它可能会增加对气候变化的影响。此外,可重复使用性的任何环境效益都可能被这项技术所促进的全球太空活动的增长完全抵消,从而导致适得其反的反弹效应。本研究强调,由于采用生态设计方法,影响可能会减少,这将减轻这种影响。关键词:环境影响、生命周期评估、生态设计、发射器、可重复使用性、方法论 首字母缩略词/缩写