Site Forchheim, Bavaria Site Berlin, Berlin Fraunhofer Project Center for Energy Storage and Systems ZESS, Braunschweig, Lower Saxony Fraunhofer Technology Center High-Performance Materials THM, Freiberg, Saxony Fraunhofer Smart Ocean Technologies SOT research group, Rostock, Mecklenburg-Western Pomerania Biological Materials Analysis research group at Fraunhofer IZI, Lipsia, Saxony Circular Carbon Technologies KKT research group Freiberg, Saxony Cognitive Material Diagnostics project group, Cottbus, Brandenburg Fraunhofer Center for Smart Agriculture and Water Management AWAM, Porto, Portugal Battery Innovation and Technology Center BITC, Arnstadt, Thuringia Industrial Hydrogen Technologies Thuringia WaTTh, Arnstadt,图里亚应用中心水,赫姆斯多夫,图林雅应用中心膜技术,施马尔登,图林雅
(a)使用SUP-B15 Cas9单克隆,SGRNA库的慢病毒转导效率。(b)使用KOPN-8 CAS9单个克隆在CRISPR屏幕的“初始”和“最终”点收集的NGS样品中SGRNA读数的分布。(c)使用SUP-B15 Cas9单个克隆在CRISPR屏幕的“初始”和“最终”点收集的NGS样品中SGRNA读数的分布。(d)使用KOPN-8 CAS9单个克隆在CRISPR屏幕上收集的NGS样品的PCA分析。(E)使用SUP-B15 Cas9单个克隆在CRISPR屏幕的“初始”和“最终”点收集的NGS样品的PCA分析。(f)使用KOPN-8 CAS9单个克隆,针对CRISPR屏幕中36个RNA和DNA甲基化机械基因的SGRNA的CRISPR得分。CRISPR得分已针对阴性对照SGRNA的平均得分进行标准化(设置为0.0)。(g)使用SUP-B15 Cas9单克隆,针对CRISPR筛选中36个RNA和DNA甲基化机械基因的SGRNA的CRISPR得分。CRISPR得分已针对阴性对照SGRNA的平均得分进行标准化(设置为0.0)。(h)在KOPN-8 CAS9克隆#2中靶向Znf217的25个SGRNA的计数。(i)读取针对SUP-B15 Cas9克隆#1中Znf217的25个SGRNA的计数。(j)读取25个针对Znf217的SGRNA的计数,SUP-B15 Cas9克隆#2。(k)ZnF217在不同的B-ALL亚型和健康的骨髓中的表达。Znf217表达数据来自白血病(MILE)研究的微阵列创新(登录GSE13159)。n = 70,MLL-R; BCR-ABL1 n = 122; n = 237,类似于bcr- abl1; n = 40用于高二倍体; TCF3-PBx1的n = 36; ETV6-RUNX1的n = 58; n = 73用于健康的BM。使用两尾t检验计算p值。** p <0.01; *** p <0.001。
自我功率+ 52英寸Z6零骑行割草机是ZTR,就像其他地方一样采用Peak Power™+技术,它结合了高达6个EGO 56V ARC LITHIUM™电池的功率 - 相同的电池技术为所有EGO产品提供动力,使其成为世界上第一个兼容的骑手。采用5个独立无刷电动机设计,可在切割和驾驶功率方面提供25马力,等效于燃气发动机。使用52英寸的10号制造钢甲板制造,并达到8 mph的最高速度,该新的ZTR可以使您更快地覆盖地面一次充电,最多可将4英亩的土地切成六英亩,包括六个EGO 12.0AH 56V ARC LITHIUM™电池。与市场上的任何其他电池供电的ZTR不同,可以添加更多电池以削减5、6、7或尽可能多的英亩。该行业最快的充电器在短短4个小时内收取6 x 12.0AH的费用,比竞争对手快4倍。可调座悬架可确保平稳的骑行。使用具有3种驾驶模式的LCD接口自定义割草体验:控制,标准和运动 - 可以用手指的简单触摸来访问。高级功能,例如LED灯,USB充电端口和蓝牙等优质功能,以使体验与其他任何ZTR不同。为耐用性而构建 - 割草机,电池和充电器都有5年的保修。在全新的自我力量+ 52英寸Z6零转弯割草机上,从未像现在这样的零割草
我们描述了一种从聚合图统计数据(而不是图邻接矩阵)学习深度图生成模型 (GGM) 的新设置。匹配观察到的训练图的统计数据是学习传统 GGM(例如 BTER、Chung-Lu 和 Erdos-Renyi 模型)的主要方法。隐私研究人员已提出从图统计数据中学习作为保护隐私的一种方式。我们开发了一种架构来训练深度 GGM 以匹配统计数据,同时保留局部差异隐私保证。对 8 个数据集的实证评估表明,当两者都仅从图统计数据中学习时,我们的深度 GGM 比传统的非神经 GGM 生成更逼真的图。我们还将仅在统计数据上训练的深度 GGM 与在整个邻接矩阵上训练的最先进的深度 GGM 进行了比较。结果表明,图统计数据通常足以构建具有竞争力的深度 GGM,该深度 GGM 可生成逼真的图,同时保护本地隐私。