(a)使用SUP-B15 Cas9单克隆,SGRNA库的慢病毒转导效率。(b)使用KOPN-8 CAS9单个克隆在CRISPR屏幕的“初始”和“最终”点收集的NGS样品中SGRNA读数的分布。(c)使用SUP-B15 Cas9单个克隆在CRISPR屏幕的“初始”和“最终”点收集的NGS样品中SGRNA读数的分布。(d)使用KOPN-8 CAS9单个克隆在CRISPR屏幕上收集的NGS样品的PCA分析。(E)使用SUP-B15 Cas9单个克隆在CRISPR屏幕的“初始”和“最终”点收集的NGS样品的PCA分析。(f)使用KOPN-8 CAS9单个克隆,针对CRISPR屏幕中36个RNA和DNA甲基化机械基因的SGRNA的CRISPR得分。CRISPR得分已针对阴性对照SGRNA的平均得分进行标准化(设置为0.0)。(g)使用SUP-B15 Cas9单克隆,针对CRISPR筛选中36个RNA和DNA甲基化机械基因的SGRNA的CRISPR得分。CRISPR得分已针对阴性对照SGRNA的平均得分进行标准化(设置为0.0)。(h)在KOPN-8 CAS9克隆#2中靶向Znf217的25个SGRNA的计数。(i)读取针对SUP-B15 Cas9克隆#1中Znf217的25个SGRNA的计数。(j)读取25个针对Znf217的SGRNA的计数,SUP-B15 Cas9克隆#2。(k)ZnF217在不同的B-ALL亚型和健康的骨髓中的表达。Znf217表达数据来自白血病(MILE)研究的微阵列创新(登录GSE13159)。n = 70,MLL-R; BCR-ABL1 n = 122; n = 237,类似于bcr- abl1; n = 40用于高二倍体; TCF3-PBx1的n = 36; ETV6-RUNX1的n = 58; n = 73用于健康的BM。使用两尾t检验计算p值。** p <0.01; *** p <0.001。
1。(2023,Neurips Conference)Will,G。Behrens,J。Busecke,N。Lose,C。Stern,T。Beucler等。:攀登:用于混合物理机器学习气候仿真的大型多尺度数据集。神经信息处理系统的进步。“ Oustanding数据集和基准测试”奖。2。(2023年,Neurips Workshop)Lin,J.,M。A. Bhouri,T。Beucler,S。Yu&M。Pritchard:在看不见,温暖的气候下,应对混合物理学机器学习气候模拟的压力测试。2023神经信息处理系统会议。3。(2021,Neurips Workshop)Mangipudi,H.,G。Mooers,M。Pritchard,T。Beucler&S。Mandt:使用多通道VAE分析高分辨率云和对流。2021神经信息处理系统会议。4。(2020年,Igarss)Beucler,T.,M。Pritchard,P。Gentine&S。Rasp:迈向物理上一致的数据驱动的对流模型。IEEE国际地球科学和遥感研讨会2020年。5。(2020年,气候信息学)Mooers,G.,J。Tuyls,S.Mandt,M。Pritchard&T。Beucler:大气对流的生成建模。第十届国际气候信息学会议的会议记录,98-105。6。(2019年,ICML研讨会)Beucler,T.,S。Rasp,M。Pritchard&P。Gentine:在气候建模中实现神经网络模拟器中的能量保护。2019年国际机器学习会议。
human path prediction experiments with realistic perception, contributing a novel error correction module • Leveraged Unity for scene recreation and deep generative modeling for multi-modal, variational predictions TrajAir Aug 2021 – May 2022 • Researched machine learning methods for predicting aircraft trajectories in non-towered airspaces • Utilized clustering and vector field methods to capture movement patterns and infer pilot intent University of密歇根州EFES实验室|密歇根州安阿伯,2019年9月 - 2020年5月•设计和构建了一个系统,可以通过使用符号执行来查找应用程序中的持续记忆错误•在Oracle的NVM直接框架上进行LED调查和实验,发现和报告23个新错误专业经验stack AV |宾夕法尼亚州匹兹堡,2024年3月 - 2024年8月研究软件工程师实习生
我们描述了一种从聚合图统计数据(而不是图邻接矩阵)学习深度图生成模型 (GGM) 的新设置。匹配观察到的训练图的统计数据是学习传统 GGM(例如 BTER、Chung-Lu 和 Erdos-Renyi 模型)的主要方法。隐私研究人员已提出从图统计数据中学习作为保护隐私的一种方式。我们开发了一种架构来训练深度 GGM 以匹配统计数据,同时保留局部差异隐私保证。对 8 个数据集的实证评估表明,当两者都仅从图统计数据中学习时,我们的深度 GGM 比传统的非神经 GGM 生成更逼真的图。我们还将仅在统计数据上训练的深度 GGM 与在整个邻接矩阵上训练的最先进的深度 GGM 进行了比较。结果表明,图统计数据通常足以构建具有竞争力的深度 GGM,该深度 GGM 可生成逼真的图,同时保护本地隐私。