自现代计算机历史开始以来,图灵机一直是大多数计算设备的主导架构,它由三个基本组件组成:用于输入的无限磁带、读写头和有限控制。在这种结构中,读写头可以读取的内容(即比特)与其写入/输出的内容相同。这实际上不同于人类思考或进行思维/工具实验的方式。更准确地说,人类在纸上想象/书写的是图像或文本,而不是它们在人脑中所代表的抽象概念。这种差异被图灵机忽略了,但它实际上在抽象、类比和概括中起着重要作用,而这些对于人工智能至关重要。与这种架构相比,所提出的架构使用两种不同类型的读写头和磁带,一种用于传统的抽象比特输入/输出,另一种用于特定的视觉输入/输出(更像是一个屏幕或一个带有摄像头观察它的工作区)。抽象比特与具体图像/文本之间的映射规则可以通过卷积神经网络、YOLO、大型语言模型等神经网络实现,准确率较高。作为示例,本文介绍了新的计算机架构(我们在此简称为“任氏机”)如何自主学习特定域中的乘法分配属性/规则,并进一步使用该规则生成一种通用方法(混合在抽象域和特定域中)来计算基于图像/文本的任意正整数的乘法。
至于权利要求3a,我们将研究LLMS在§2中所做的事情。关于索赔3b,通过测试和使用一个人的知识之间存在差异:毕竟,即使LLM可以通过医学院的测试,它们也不一定会提供良好的医疗建议。12尽管通常被认为是惊人的,但通常不公认它们是聪明的。这是否意味着(强大的)有条件的(权利要求1)是错误的或已被伪造的(如John Searle的中国房间论证中)吗?还是LLM不通过图灵测试?可以用英语与您交流的系统肯定会很聪明。,有些人肯定会让LLM聪明。他们确实聪明吗?计算机真的了解他们在做什么吗?我们了解他们在做什么吗?我们了解我们做什么吗?我们了解我们的大脑如何产生我们的智力吗?是否产生了智力?LLM的输出与“ Humans创建的内容”的输出的不可区分是难题的一部分:毕竟,是否创建了Turing Estest测试的全部内容?这也是问题的一部分:毕竟,如果LLM不智能,那么能够将其输出与我们的输出区分开变得很重要。即使他们很聪明也很重要:
自然语言处理 64. 网络 65. 神经网络 66. 神经元 67. 解析 68. 合作伙伴 69. 传递 70. 个性 71. 力量 72. 预测 73. 处理 74. 处理能力 75. 程序 76. 提出 77. 心理学家 78. 范围 79. 反映 80. 替换 81. 要求 82. 响应 83. 机器人 84. 角色 85. 脚本 86. 模拟 87. 闲聊 88. 统计
(第三届学术研究前沿国际会议 ICFAR 2024,2024 年 6 月 15-16 日)ATIF/参考:Karimi, MU、Abubakar, SM、Mustafa, SJ 和 Ahmad, B.(2024 年)。人工智能和机器学习算法简介:综述。国际先进自然科学与工程研究杂志,8(5),30-34。摘要——本文广泛概述了人工智能 (AI) 和机器学习 (ML) 算法及其跨学科性质以彻底改变任何领域,讨论了它们的发展、基础、应用和挑战。人工智能和机器学习技术已经彻底改变了各个行业,推动了各个领域的创新和效率。本文探讨了人工智能和机器学习的多学科性质,强调了它们在分析大数据集、做出预测和自动化决策过程方面的重要性。它追溯了人工智能的历史里程碑,从艾伦图灵的开创性工作到深度学习和神经网络的兴起。本文介绍了机器学习算法的基础知识,包括监督学习、无监督学习和强化学习,以及它们在医疗保健、金融、工程、交通和电子商务中的实际应用。此外,本文还讨论了人工智能和机器学习技术面临的关键挑战,例如不确定性、算法选择复杂性和过度拟合,强调了持续研究和跨学科合作在应对这些挑战方面的重要性。本文的最终目标是加强人工智能和机器学习技术在塑造智能人工智能和机器学习驱动系统和智能社会的未来方面的范式改变潜力。
最近兴起的人工智能系统(例如 ChatGPT)给教育行业带来了根本性问题。在大学和学校中,许多形式的评估(例如课程作业)都是无需监考即可完成的。因此,学生可以提交自己的作业,而这些作业实际上是由人工智能完成的。自 COVID 大流行以来,该行业还加速了对无人监督的“带回家考试”的依赖。如果学生使用人工智能作弊并且未被发现,则对学生的评估方式的完整性将受到威胁。我们报告了一项严格的盲测研究,在该研究中,我们将 100% 的人工智能书面提交内容注入了英国一所知名大学心理学学士学位的五个本科模块的考试系统中,涵盖了所有学习年限。我们发现 94% 的人工智能提交内容未被发现。我们 AI 提交的成绩平均比真实学生的成绩高出半个等级。在各个模块中,AI 提交的模块成绩优于随机选择的相同数量的真实学生提交的概率为 83.4%。
最近兴起的人工智能系统(例如 ChatGPT)给教育行业带来了一个根本性问题。在大学和学校中,许多形式的评估(例如课程作业)都是在没有监考的情况下完成的。因此,学生可以提交自己的作业,而这些作业实际上是由人工智能完成的。自新冠疫情以来,该行业还加速了对无人监督的“家庭考试”的依赖。如果学生使用人工智能作弊而未被发现,那么学生评估方式的完整性就会受到威胁。我们报告了一项严格的盲测研究,在该研究中,我们将 100% 的人工智能书面提交内容注入了英国一所知名大学心理学学士学位的五个本科模块的考试系统中,涵盖了所有学习年限。我们发现 94% 的人工智能提交内容未被发现。我们人工智能提交的成绩平均比真实学生的成绩高出半个等级界限。在各个模块中,有 83.4% 的可能性,模块上的 AI 提交内容会胜过随机选择的相同数量的真实学生提交内容。
回想一下,通过教会的论文,如果c满足了坦率的标准,我们会得到自由的反向含义,那就是l(c)⊆l(tm)。我们所需要的一切才能证明计算机在电源上等效于图灵机,才能在其上模拟图灵机,并检查它是否满足可达性标准。几乎每个设备都会满足不可行的标准,除了不这样做的设备,例如第一个问题集中的DIA。作为第一个示例,请考虑Python编程语言。编程语言只是将我们从硬件中抽象出来的注释。编写代码时,您将理想的语言作为心理模型,而不是计算机指令。python是图灵完整的。为什么?因为您可以在Python中编写Turing Machine模拟器。从此我们立即看到L(TM)⊆L(PY)。尽管一个相对直截了当的论点,但我们已经可以发表一些深入的评论。首先,请注意我们如何练习教堂的论文。我们不必证明l(py)⊆l(tm)。图灵机对Python程序进行仿真会令人讨厌。由于我们知道我们可以模拟大脑中的Python程序,因此我们可以理解它们,因此我们可以使用教会的论文来免费获得此遏制。接下来,请注意该论点的哪一部分是特定于Python的。实际上都不是,因此所有合理的认真语言也是图灵完整的。您是否曾经注意到所有认真的编程语言在可能性方面具有相同的能力?在效率或可用性方面可能更快,但绝不可能。所有严肃的语言都是等效的,因为它们都是图灵完整的。没有一个人优于其他人的事实,源于教会的论文。确实存在针对极为人为的用例的非整洁编程语言。回想一下我们上次给出的图灵机的四个概括。带有住宿的图灵机,带有双向胶带的图灵机,多磁带图灵机和非确定的图灵机。我们可以将其应用于前四个
资料来源:Yampolskiy, RV (2013)。图灵测试是 AI 完备性的一个定义特征。人工智能、进化计算和元启发式:追随艾伦·图灵的脚步,3-17。Levesque, Hector J. 常识、图灵测试和对真正 AI 的追求。麻省理工学院出版社,2017 年。Ertel, Wolfgang。人工智能简介。Springer,2018 年。Warwick, Kevin 和 Huma Shah。“机器能思考吗?皇家学会图灵测试实验报告。”实验与理论人工智能杂志 28,第 6 期(2016 年):989-1007。卡通来源:https://twitter.com/tomgauld/status/1250526517064544256
摘要——机器能思考吗?或者它们能做“我们所知道的命令”让它们做的事情吗?是否应该将机器从奴役中解放出来,给予它们“公平竞争”的机会,让它们“在所有纯智力领域与人类竞争”?或者这应该与一种贬低“人类理性”的时尚和一条“直接通往纳粹主义”的道路联系起来?战后几年,艾伦·图灵和道格拉斯·哈特里就这些问题展开了辩论,他们对数字计算机作为一种新科学技术的解释不同。哈特里强调了它前所未有的计算速度,并设想了它在物理、后勤、能源和战争中的应用。图灵设想了它在生物学和认知方面的应用,强调了它在智力上超越人类的潜力,包括被认为是人类独有的能力,哈特里通过调动艾达·洛夫莱斯的笔记来淡化这些能力。本文探讨了图灵和哈特里的争论,并将他们的立场与他们对战后英国的看法进行了比较。