缘 圆 圆 阅藻贼藻则皂蚤灶葬贼蚤燥灶燥枣阅赠灶葬皂蚤糟蕴燥葬凿悦燥灶凿蚤贼蚤燥灶燥枣粤蚤则糟则葬枣贼悦葬则则蚤藻则遭葬泽藻凿燥灶酝怎造贼蚤增葬则蚤葬遭造藻阅蚤泽贼则蚤遭怎贼蚤燥灶燥枣云造蚤早澡贼孕葬则葬皂藻贼藻则泽
缘 圆 圆 阅藻贼藻则皂蚤灶葬贼蚤燥灶 燥枣 阅赠灶葬皂蚤糟 蕴燥葬凿 悦燥灶凿蚤贼蚤燥灶 燥枣 粤蚤则糟则葬枣贼 悦葬则则蚤藻则 遭葬泽藻凿 燥灶 酝怎造贼蚤增葬则蚤葬遭造藻 阅蚤泽贼则蚤遭怎贼蚤燥灶 燥枣 云造蚤早澡贼 孕葬则葬皂藻贼藻则泽
摘要:在包括瑞典在内的许多国家,私人住宅的并网光伏电池系统越来越受欢迎。本研究旨在评估这种分布式并网光伏电池系统在瑞典度假胜地的单户住宅中的技术经济可行性。研究需求费用的影响尤其令人感兴趣,因为瑞典的公用事业公司经常引入需求费用,并且在受欢迎的冬季运动地区也很常见。并网光伏电池系统根据其净现值进行规模化和优化。负载模式、激励措施、需求关税结构和电价变化用于研究所得结果的敏感性。当应用需求费用时,与没有电池的并网光伏系统相比,并网住宅光伏电池系统的盈利能力相同。当负载曲线全年都有峰值负载并且电池足够大以削减许多峰值时,并网光伏电池系统的盈利能力略高于没有电池的并网光伏系统。总节省额还取决于实际的需求费率。我们发现,良好的盈利能力很大程度上取决于当前国家对这些系统的激励措施,即对剩余电力和投资成本的税收抵免。取消对剩余电力的税收抵免将使无电池并网光伏系统产生的节约减少得比有电池并网光伏系统多得多。
北越没有空运能力,他们只剩下两个选择,陆运和水运。越南沿海路线以及整个内陆水道和湄公河系统都受到南越和美国海军的监视和阻断。警察和军事当局实施了河流监视计划,通过非军事区进入南越的陆路路线被彻底阻断,以至于利用最初未参与冲突的其他国家成为实施入侵的主要手段。随后老挝和柬埔寨作为运输路线的介入违反了各种国际条约和协议。人们很早就认识到,北越及其在老挝和柬埔寨的有组织的叛乱不符合公认的国际规则。尽管许多物资仍通过南越的正规和临时共产主义部队,但这些补给线的阻断挽救了数千名美国和盟军的生命。开始 1966 年 8 月,一个科学研究小组(杰森小组)被邀请提交一份提案,讨论在非军事区下方越南各地建立广泛的空中支援反人员屏障系统。9 月,国防部长麦克纳马拉成立了国防通信规划小组来实施这一概念,后来将任务范围扩大到覆盖越南、老挝和
关键词:GaN、焊料、AuSn 焊料、溅射、共晶、芯片粘接摘要对于 GaN MMIC 芯片粘接,经常使用 80%Au20%Sn 共晶焊料。通常的做法是使用预制件 AuSn 将芯片粘接到 CuW 或其他一些基板上。在此过程中,操作员可能需要将预制件切割成芯片尺寸,然后对齐预制件、芯片和基板。由于操作员需要同时对齐三个微小部件(预制件、芯片和基板),因此这是一个具有挑战性的过程,可能需要返工。此外,预制件厚度为 1mil(在我们的例子中),这可能导致过量的焊料溢出,需要清理,因为它会妨碍其他片外组装。整个芯片粘接过程可能很耗时。在本文中,我们描述了一种在分离芯片之前在 GaN 晶圆上使用共晶成分溅射靶溅射沉积共晶 AuSn 的方法。它消除了预制件和芯片的对准,并且不会挤出多余的 AuSn。通过使用共晶溅射靶,它还可以简化靶材制造。下面给出了芯片粘接结果。引言宽带微波 GaN MMIC 功率放大器在国防和通信应用中具有重要意义。随着设备性能的提高,芯片粘接变得非常重要,因为它会极大地影响 MMIC 的热预算。80%Au/20%Sn 焊料已用于半导体应用超过 50 年,通常作为冲压预制件。然而,由于需要将 MMIC 芯片中的多个小块和焊料预制件对准到载体上,因此芯片粘接过程可能很繁琐且耗时。在芯片分离之前在整个晶圆上溅射沉积 AuSn 将大大简化芯片粘接过程。然而,溅射的 AuSn 成分对于正确的焊料回流至关重要。由于 Au 和 Sn 的溅射产率不同,AuSn 溅射靶材的化学性质和沉积的 AuSn 薄膜之间存在显著的成分变化 [参考文献 1]。下图 1 显示了 Au-Sn 相图。通过仔细控制溅射参数(功率、压力和氩气),我们能够从共晶成分溅射靶中沉积共晶 AuSn。制造共晶成分溅射靶要容易得多/便宜得多。
直接键合技术不断发展,以应对“更多摩尔”和“超越摩尔”的挑战。自 20 世纪 90 年代绝缘体上硅 (SOI) 技术的出现以来,CEA-Leti 已在直接键合方面积累了丰富的专业知识。从那时起,CEA-Leti 团队一直在积极创新直接键合,以拓宽应用领域。该技术基于室温下两个紧密接触的表面之间的内聚力。然后,范德华力(氢键)和毛细桥产生所需的粘附能。键合后退火将弱键转变为共价键,最终形成一块材料。随着混合键合的出现,直接键合现在不仅解决了基板制造问题,还解决了 3D 互连领域的问题。本文介绍了 CEA-Leti 开发的不同直接键合技术及其在微电子行业和研发中的应用。在文章的第一部分,简明扼要地介绍了直接键合物理学。然后,概述了最先进的键合技术,包括晶圆对晶圆 (WTW) 混合键合、芯片对晶圆 (DTW) 混合键合和 III-V 异质键合。针对合适的应用领域,比较了每种技术的优势、挑战、应用和利害关系。第三部分重点介绍 CEA-Leti 在 ECTC 2022 和 ESTC 2022 上展示的最新混合键合 D2W 结果。讨论了集成挑战以及专用设备开发的作用。最后一部分介绍了潜在的市场和相关产品,并以具有硅通孔 (TSV) 和多层堆叠的芯片为例。
SEMI E62 描述了 FOSB 开门装置的特性和基本功能。E62 是针对设备配置的非常具体的标准,包括定位销、密封区域和锁销形状、位置、运动和扭矩。300 毫米 FOSB 必须与这些功能配合使用,但精确的配合功能尺寸、位置和设计由载体制造商决定。与 E62 FOSB 开门器配合的 FOSB 功能由 Entegris 设计规范定义。一般而言,这种兼容性涉及 E62 FOSB 开门器功能周围的适当间隙和相对位置。
本用户手册及其所含信息为 MGI 所有,仅供其客户根据合同使用本手册所述产品之用,不得用于其他目的。未经 MGI 事先书面同意,任何个人或组织不得全部或部分转载、复制、修改、分发或向他人披露本用户手册。任何未经授权的人员不得使用本用户手册。
本论文的目的是研究使用 ECR(电子回旋共振)氢等离子体技术的低温原位清洗工艺和使用 HF 浸渍法的原位清洗工艺,用于低温硅同质外延生长。在 MS-CVD(多室化学气相沉积)反应器上安装了负载锁室,以降低将污染物引入系统的可能性。选择 ECR 等离子体系统是因为与传统的 RF(射频)系统相比,它可以以良好调节的方式输送更高密度的低能离子。选择氢气是因为氢气质量轻,并且能够与表面污染物发生化学反应。在原位清洗的晶圆顶部沉积外延层,并通过 XTEM(横截面透射电子显微镜)和 RBS(卢瑟福背散射光谱)技术研究外延层和外延层/衬底界面的结构质量。使用 SIMS(二次离子质谱)检测界面处的氧和碳污染物。
用于 mmWave 封装测试的 xWave 平台 • 信号完整性 – 短阻抗控制共面波导 (CPW) – 测试仪和 DUT 之间的 1 个转换(连接器到引线框架) – DUT 球接触 CPW • 集成解决方案(PCB/接触器合一) – 包括从测试仪到 DUT 的完整 RF 路径 – 用于电源和控制信号的 Pogo 引脚 • 生产封装测试解决方案 – 坚固的引线框架可持续数百万次循环 – 机械组装完全可现场维护 – 包括校准套件(s 参数) – 用于三温测试(-55 至 155°C)的 CTE 匹配材料