对2000年至2020年发表的精选论文的书目分析强调,关于藜麦的最佳农艺实践的研究数量在2013年以后,FAO庆祝了藜麦的国际年份,并将藜麦作为一种高品质的蛋白质作物抗性环境的重要性而散布。在以炎热,干旱气候和水资源稀缺为特征的国家(摩洛哥,埃及,埃及,伯基纳法索和阿联酋)以及面临水和盐压力风险的国家(意大利,意大利,希腊,土耳其,巴基斯坦和美国的盐水)造成的批准和质量的效率和质量的质量[ ]。本期刊上发表的论文也提出了相同的主题;藜麦证实了对干旱环境(例如巴西塞拉多)的适应性,那里的水状态在309至389毫米之间并不能减少相对于较高的灌溉量而降低谷物的产量[2]。以相同的方式,在智利南部阿塔卡马沙漠中进行了一个领域的实验,以调查对九个先前选择的九个先前选择的沿海低地自授粉(CLS)线的灌溉的反应,而商业品种雷加罗纳(Regalona)表明,当灌溉减少50%时,几条线表现最好[3]。Bharami等。[4]研究了藜麦CV的产量响应。藜麦对玻利维亚阿尔特普拉诺(Altiplano)的施肥做出积极反应[5],在灌溉条件和雨水条件下有不同的侵害。藜麦可以产生1850 kg谷物ha -1titicaca在伊朗的领域条件下,表明75%的全面灌溉要求导致在上层土壤层中没有3 -n积累,从而促进了氮的摄取和硝酸盐损失,从而减少了土壤较深的层,从而降低了硝酸盐的含量降低,从而降低了氮的肥料水平。
(21)P-2022/0816(22)29.08.2022。 div>(30)HU 17.05.2022。 div>13699/22 (54) Production process of biodegraders in granulate, composed of liquid bio-sized powder, in order to increase carnivorous substance during food of plant (71) Agošton, Aršton, RS (72) Agošton, Arpad, Main 25, 24400 Senta, RS (57) Biodegrit in granulate is a product that would be used in agriculture for plant nutrition. div>报纸的新颖性是由生物有机物质的液体混合物制成的,并添加了天然无机物质粉(沸石),他得到了砂化肥。 div>该产品在植物的营养方面具有优势,并提高了与人造肥料有关的土地质量。 div>与土地水接触的颗粒正在缓慢地溶解并流入更深的土地层,并且很长一段时间以来植物采用营养。 div>这对于植物的适当生长和发育以及植物对疾病和害虫的耐药性非常重要,尤其是对于寿司。 div>(54)生产生物肥料在颗粒状的过程中,由液体生物有机物质与微生物和巨型匹配匹配,以增加摄入植物(57)生物培养剂在颗粒中的利用(57)是一种用于农业的产物,可用于饲料。 div>生产过程的新颖性是颗粒化的肥料是从生物有机物质的液体混合物中获得的,并添加天然无机粉(沸石)。 div>与人造肥料相比,该产品在植物营养和改善土壤质量方面具有优势。当颗粒与土壤中的水接触时,它们会慢慢溶解并流入较深的土壤层,并且养分在更长的时间内被植物吸收。这对于植物的适当生长和发育以及植物对疾病和害虫的抵抗至关重要,尤其是对干旱。
土地降解是埃塞俄比亚的主要问题,因为它通过释放温室气体(GHG)和碳固隔速率降低而导致气候变化。这篇综述的目的是评估埃塞俄比亚的保护农业(CA)在气候变化适应和缓解中的作用。遵循从相关搜索引擎获得的材料的材料,遵循了识别和综合同行评审的研究和审查文章,报告,程序和书籍章节的关键审查方法过程。各种报告的发现表明,与常规耕作相比,最低耕作有助于土壤水分保护。保护耕作可维持农作物残留物,大大降低土壤温度并增加地表土壤层中的养分积累,所有这些都会导致农作物的生长和产量更高,因此有助于适应气候变化。此外,农业和其他土地使用会大大促进温室气体排放;然而,保护农业方法在骨料中改善了土壤有机碳(SOC),土壤聚集和碳,以及有助于气候变化的土壤健康。几项研究发现,在保护耕作实践中,土壤聚集,土壤有机碳储存,土壤酶和微生物生物量等土壤健康指标有可能改善碳氮循环,土壤稳定性和整体作物生产率。在气候适应和缓解方面,CA是减少温室气体排放的不可取消选择之一。作物多样性,提高氮的消耗效率,作物旋转,改善土壤碳固换方法;农作物残留物保留率,最小土壤干扰,肥料掺入和综合农业系统都是最小化温室气体排放的重要因素。此外,阻碍采用的因素包括缺乏适当的设备和机械,杂草控制方法,将农作物残留物用于燃料木材和动物饲料,对CA对土壤健康和可持续性的好处缺乏认识,以及缺乏对小农民的政府技术和财务支持。采用和扩大CA实践对于确保可持续发展目标和有弹性的未来至关重要。因此,相关的利益相关者应考虑上述考虑因素,同时通过与增强的技术集成大规模地促进技术。
对空气伽马射线图像作为土壤特性指标的实证研究 - 新南威尔士州沃加沃加。Phil Bierwirth 1 、Paul Gessler 2 和 Dermot McKane 3 1 澳大利亚地质调查组织,邮政信箱 378,堪培拉,ACT 2601 2 CSIRO 土壤部,邮政信箱 639,堪培拉,ACT 2601 3 新南威尔士州土地和水资源保护部,邮政信箱 639,堪培拉,ACT 2601 电子邮件:pbierwir@agso.gov.au,电话:(06)2499231,传真:(06) 2499970 摘要 通过对土壤样本中放射性元素丰度和土壤特性的实证分析,可以评估机载伽马射线图像的信息内容。在地质学、地貌学和土壤发生学的背景下进行解释。结果表明,伽马图像能够绘制土壤特性,如 pH 值、成分/营养物质和质地,但伽马响应通常是矿物、地貌和成土过程的混合。在相对地貌不活跃的地区,钾映射浸出和酸度,而钍定义粘土类型和含量。一般而言,包括不同元素迁移在内的多种影响的混合会阻碍简单的解释。解释模型应包括根据地貌和地质将数据细分为不同领域。简介 本文报告了一项试点研究的重要发现,该研究考察了机载伽马辐射数据作为土壤和土地退化快速测绘工具的效用(Bierwirth,1996 年)。航空伽马光谱法通过测量 K、Th 和 U 放射性衰变产生的伽马射线丰度,提供岩石/土壤层顶部 30-45 厘米的地球化学空间图像,植被的影响很小。在特定的景观中,K、U 和 Th 的空间分布以及 U 和 Th 的衰变产物将取决于物理和化学风化过程 - 与主要矿物有关,这些矿物的风化模式受该地区的地貌状况和气候影响。风、地表冲刷和冲积过程对矿物的物理运输占放射性元素分布的大部分(Martz 和 de Jong,1990 年)。矿物成分发生化学分解后,大多数元素都具有可移动性(可溶解或附着于胶体),具体取决于化学条件,而化学条件又可能与矿物学、地貌年龄和气候因素有关。例如,水解作用会释放出钾长石和云母中的 K +,用于伊利石的形成,吸附到其他粘土上或通过流体迁移去除(Wedepohl,1969 年)。酸性溶液将在风化早期阶段取代 H +,从而有助于 K + 的释放,这最初也可能会增加 pH 值 (Wollast,1967)。因此,空气中检测到的 K 分布的空间模式将取决于土壤的矿物学和年龄(即风化状态)。由于空气中的 U 和 Th 数据分别来自衰变产物 214 Bi 和 208 Tl 产生的伽马辐射,因此了解这些元素的所有母体具有相当长的半衰期的流动性方面非常重要。在铀衰变链中,同位素
由于土壤中种植各种文化作物的10-20厘米层中的微生物数量达到了16-22百万,这是由于该层的土壤有利的环境以及没有阳光的杀戮作用。土壤微生物的一定份额与其形态结构直接相关,其含量约为0.3-60万,贫瘠的石质,沙质土壤。在7月至8月的夏季,在温室土壤中观察到了最多的微生物,23-2800万辆,该土壤富含文化肥料,每年耕种,在种植大蒜和洋葱的土壤中。分析土壤的微生物主要形成3组,由底部植物,真菌和细菌组成。在温室土壤中记录了数量最多的杜鹃花,而果园中最高数量记录了Basidiomycete群的代表。例如,1克15*15*10厘米的5年园林土壤中含有0.7-1.2,000亿个真菌菌丝,其长度在1/40 m2中达到25-35 m,在1 HA面积的500-600中占有共同的份额。作为种植不同农作物的田间细菌和真菌量的指标,苜蓿中的结节细菌小于棉(茎未去除)土壤中的腐烂细菌,而玉米田中的土壤细菌的数量几乎与蔬菜田中的土壤细菌相同。通常,在布哈拉绿洲的10-20厘米层中,在1 g土壤中记录了1,8-26万种细菌,该土壤上有局部肥料。85%是腐殖质,剩余10%的植物,5%的土壤动植物和动植物。近年来,有机农业和已广泛促进的环保产品的种植直接取决于用作底物的土壤的组成。当前在布哈拉绿洲中培养的土壤的有机成分可描述如下。众所周知,土壤的有机含量或多或少与植物数量成正比。这也可以在不同天然区域的植物量的示例中看到。例如,在森林苔原中为150-2500 g/m2,在森林taiga中为25000-40000 g/m2,在草原区域为1200-2500 g/m2,沙漠区域中的根数在植物的繁殖量中是有机物的幽默,在殖民地的一部分中,沙漠区域中的根数为1:8-1:9复杂性。尽管没有统一的理论形成理论,但腐殖质的速度取决于植物残基的数量和化学组成,土壤水分和充气,微生物活性的强度,微生物组的组成[3,4]。定量分析生活在不同土壤中的动物时,脊椎动物和无脊椎动物的重量比为1:1000。土壤脊椎动物居住在其中并参与各种过程,由于它们对土壤层,水和空气交换的混合以及高植物的生长和发展的积极影响。另一种无脊椎动物在土壤中筑巢并充分利用植物根周围的土壤是黑蚂蚁(Lasius Niger)。在土壤无脊椎动物中,earth的数量和数量最大,它们在1年内通过其体内每1公顷的土壤移动250-600吨土壤,并增加了几次生产率[5]。由于他们生活在低层建筑,花盆和其他类似植物的庭院中,因此已经研究了它们对植物与生长土壤之间关系的影响(图1和2)。选择蚂蚁在12个花盆中生长的植物和6个对照组,在那里不允许进入蚂蚁,并在60天内观察到花盆中生长的花的一般状况,花朵的新鲜度和美感。