近年来,技术的快速进步、众多创新和世界数字化改变了公司和机构的工作方式。他们还调整和创造了新的方法和流程,以实现更有效、更具创新性的教育。他们试图让学生的学习过程更轻松 ([10]、[7]) 、更高效。教育的进步也为科学、技术和发展做出了贡献。理想的结果是将教育和研究活动结合起来,创造支持行业的创新 [1]。更好的教育最终可以造福每个人。通过数字化主题可以支持更有效的教育。简化设备设计、理解技术规格、促进设备原型设计,甚至降低制造过程成本,这些只是 3D 硬件数字化众多用途中的一小部分 ([19]、[3])。世界各地有许多三维环境,它们试图整合、运行和模拟来自不同领域的知识 [12]。研究表明,58% 的学生同意模拟、演示和虚拟实验室等方法让他们在实验室课堂上更加自在 [14]。如今,我们可以在几乎每个工作领域观察到数字化的趋势 [4]。它使我们能够在真实情况发生之前面对它们,从中吸取教训,从另一个角度看待问题,更快地做出反应,最终节省成本。
我们在一系列在线课程中提供了另一项针对身体特定部位的物理治疗功能,以便我们可以更加关注。经验丰富的物理治疗师和 Clara Lewitová 的学生 Marek Král 老师将展示功能洞察在盆底问题以及其他盆底相关问题的检查和治疗中的应用。它将为我们的实践提供灵感并拓宽我们的治疗视角。
尽管[插入强迫]对[插入偏置过程]的影响的扩增将发生在数十年的时间尺度上,但与[插入有偏见的过程]本身相关的固有时间尺度通常是在小时的顺序上。因此,原则上应该可以通过在短期天气预测模式下研究此类模型的性能来评估[插入过程]的异常值是否现实。
关于 FDP:5G/6G 通信和信号处理应用的人工智能 (AI) FDP 重点介绍人工智能在 5G/6G 通信和信号处理领域的影响。AI 技术广泛应用于许多应用,例如基于 5G/6G 的无线通信、信号处理、生物医学图像处理、计算机视觉、自然语言处理等。本课程将介绍 AI 的基础知识和研究领域,以及其在 5G/6G 通信和信号处理中的应用。它将有助于提升印度各工程院校教职员工的专业知识和能力。专家涵盖了一系列当代计算主题,并提供强大的理论基础,并培养批判性分析和实践技能。该 FDP 旨在传授知识并培训 AI 工程方面的基础知识以及对最近使用 5G/6G 进行通信和使用 AI 的信号处理应用的见解。主要课程内容: 图像处理、计算机视觉、信号分类、统计信号处理、信号处理技术和基于 5G/6G 的无线通信技术和应用的简介。 机器学习基础、数据预处理和数据可视化。监督和无监督学习方法、神经网络和应用。 深度学习方法简介,以及基于 DL 的其他架构及其应用。 用于信号处理、计算机视觉、语音处理和 5G/6G 通信系统的 CNN 架构。 电路设计中的 AI、天线系统设计中的 ML/DL、软件定义无线电、认知无线电中信号处理的机器学习。 MIMO 系统、系统设计中的去耦电路、双工系统、mWave 通信。 ISAC、无人机通信、5G/6G 通信技术、量子通信。 农业无人机、医疗保健人工智能、脑机接口、情绪识别。 用于生物医学成像和信号处理、EEG/ECG 信号处理和非侵入性医疗应用的 AI/ML。 Tensor Flow/Keras/PyTorch/Jupyter 和 Colab 的基础知识。 使用 Python/MATLAB 进行数据预处理和数据可视化。 案例研究,使用 Python/MATLAB 进行动手实践。 负责本课程的教师:本课程将由 NIT Warangal 的教师负责;来自 IIT/NIT/IIIT 相关领域的学者受邀在本课程中授课。来自行业的演讲者也有望作为课程的一部分进行演讲。
人工智能:欧洲和罗马尼亚初创企业格局概述及其决定其成功的因素 Adina SĂNIUȚĂ 国立政治研究和公共管理大学 6-8 Povernei St., Sector 1, 012104 布加勒斯特,罗马尼亚 adina.saniuta@facultateademanagement.ro Sorana-Oana FILIP 罗马尼亚 sorana.filip@gmail.com 摘要 人工智能 (AI) 已融入我们生活的许多方面;在技术驱动的时代,企业使用人工智能来提高生产力,更好地了解消费者行为或通过机器人提供服务。基于 Filip (2021) 为论文进行的在线桌面和试点研究,该研究概述了欧洲和罗马尼亚初创企业的格局以及决定其成功的因素,如产品开发核心团队专业知识、核心团队承诺和业务战略。该研究旨在为进一步的论文创建一个框架,该论文将深入研究罗马尼亚的人工智能初创环境,因为经济期刊预测,鉴于罗马尼亚在这一领域的潜力以及 IT、技术和机器人领域的人才库,该市场将在不久的将来增长。关键词人工智能;初创企业;成功因素。介绍人工智能的一般性讨论人工智能 (AI) 有多种形式,从人脸检测和识别系统、搜索和推荐算法到数字助理、聊天机器人或社交媒体。它的复杂性和动态性很难用一个定义来概括 (Zbuchea、Vidu 和 Pinzaru,2019)。据统计,到 2024 年,全球人工智能市场规模预计将达到 5000 亿美元(Statista,2021a),预计人工智能软件市场收入将达到 3275 亿美元(Statista,2021b)。尽管人工智能在过去几年似乎发展迅速,普及度不断提高,但人工智能的历史可以追溯到 20 世纪 50 年代,当时这一概念诞生于科学家、数学家和哲学家的头脑中。艾伦·图灵是第一个对这一主题进行广泛研究的人,他在他的论文“计算机器和智能”中描述了人工智能一词,以及它的构建和测试(Anyoha,2017,第 1 页)。随着图灵测试的引入,他
1964年成立的Tiruchirappalli国家理工学院是该国最佳的技术机构之一,在NIRF排名2022年的工程类别中排名第8。 nit Trichy有17个学术部门,并提供10个学士学位,40个硕士和17个博士学位课程。 这个58岁的研究所每年平均有2000名学生和约150名博士学位。 该研究所的信用近接近6500 sci索引文章,引用为1,00,000,H索引为105。 NIT Trichy拥有一个非常充满活力的校园,具有活跃的IPR牢房,初创企业和孵化中心,创新促进中心,最先进的研究实验室的推力地区卓越中心。1964年成立的Tiruchirappalli国家理工学院是该国最佳的技术机构之一,在NIRF排名2022年的工程类别中排名第8。nit Trichy有17个学术部门,并提供10个学士学位,40个硕士和17个博士学位课程。这个58岁的研究所每年平均有2000名学生和约150名博士学位。该研究所的信用近接近6500 sci索引文章,引用为1,00,000,H索引为105。NIT Trichy拥有一个非常充满活力的校园,具有活跃的IPR牢房,初创企业和孵化中心,创新促进中心,最先进的研究实验室的推力地区卓越中心。
关于 FDP:这个关于医学成像和信号处理应用的人工智能 (AI) 教师发展计划 (FDP) 将帮助教育工作者和研究人员了解 AI 基础知识以及它如何应用于具有多种安全应用的医学成像和信号处理技术。参与者将探索机器学习和深度学习概念,重点是将 AI 用于医学成像和信号处理技术,这有助于诊断、医疗保健、农业、零售和监控系统。AI 在图像/信号处理中起着关键作用,它基于面部识别、虹膜识别、指纹分析和语音识别实现准确而有效的身份验证方法。通过实践活动和现实世界的例子,与会者将获得在教学和研究中有效使用不同算法的 AI 的实用技能。到课程结束时,参与者将准备好将 AI 工具集成到他们的工作中,提高他们使用现代技术进行教学和解决安全挑战的能力。这将通过提高参与者在这些关键领域的专业知识和教学能力而使他们受益。主要课程内容: 图像处理、计算机视觉、生物医学信号处理、生物医学信号分类、信号处理技术和医学图像分析应用简介。 机器学习基础、数据预处理和数据可视化。监督和无监督学习方法、神经网络和应用。 深度学习方法简介,以及基于 DL 的其他架构及其应用。 用于生物医学信号处理、计算机视觉、语音处理和医学成像实现的 CNN 架构。 用于医疗保健、脑机接口、医学诊断、生物识别、情绪识别、活动识别的人工智能。 用于生物医学成像、基于 CT 扫描/MRI 的图像分析、眼底和医学图像分类的 AI/ML。 用于信号处理应用的 AI/ML、EEG/ECG 信号处理、ECG、EEG 和 PPG 信号分析、异常检测。 用于医学信号/图像数据分类的 AI/ML,各种医学图像分析和应用。 Tensor Flow/Keras/PyTorch/Jupyter 和 Colab 的基础知识。 使用 Python/MATLAB 进行数据预处理和数据可视化。 案例研究,使用 Python/MATLAB 的动手实践课程。主持本课程的教师:本课程将由 NIT Warangal 的教师主持;来自 IIT/NIT/IIIT 相关领域的学者将受邀在本课程中授课。预计行业演讲者也将作为课程的一部分授课。注册费详情:教师和研究学者 750 卢比/- 行业参与者 2250 卢比/-
1。认知和情感成熟度:○13岁时,大多数孩子缺乏进行批判性思维,情感调节和冲动控制的发展能力,使其容易受到有害内容,网络欺凌和操纵算法的影响。○研究表明,16岁及以上的儿童表现出更大的韧性和成熟度,以负责任地参与数字空间。2。心理健康风险:○包括ESAFETY专员在内的澳大利亚研究,已将早期接触到社交媒体,青少年的焦虑,抑郁和身体形象问题的水平不断上升。将暴露延迟到至少16个可以减轻这些风险。3。安全性和问责制:○社交媒体平台通常无法充分筛选用户或提供适合年龄的内容适度。更高的最低年龄对平台上的期望更加清晰,以使其安全框架和算法有效地保护年轻受众。
