课程描述人工智能探索及其在学校的实际应用通过演示、实际使用示例、实施工具和资源以及互动活动向您介绍人工智能 (AI) 领域及其在 K-12 环境中的应用。本课程重点介绍人工智能技术的各个方面,这些技术有可能促进和利用学习,并解决学校和社区中的实际问题。作为教育工作者,您还将学习向学生揭示人工智能技术如何融入我们生活的许多不同方面。您将积极参与课程内容,参与在线活动并完成动手作业以应用您的学习。在整个课程中,您将获得可供借鉴的策略,因为您将开发一个基于项目的单元,学生可以在其中应用人工智能来解决问题。
广告是数字公共领域(例如新闻网站)服务的重要推动力。但是,也有lloongng-stan anding发行问题,涉及到nline nline a e addvveerrttising ising。广告不仅可以启用深入的报告和有用的应用程序,而且还可以付出轰动性的轰动性和歧视性内容或阴谋的资金。隐私拥护者指出,对现有数据保护规则的广泛违反。世界各地的监管机构正在审查反竞争行为,并对欧洲联盟(EU)和美国(美国)的Google广告业务进行了调查。该行业的特征还具有缺乏透明度的消费者和所涉及的企业的特征,这导致了一些自我调节的努力来解决这种不透明度。
● 我承认使用 <插入名称和 url> 来生成背景研究信息,并在写作过程的起草阶段为本文创建大纲结构 ● 我承认使用 <插入名称和 url> 来确定写作风格的改进 ● 我承认使用 <插入名称和 url> 作为信息来源来生成以我自己的语言包含在我最终评估中的材料 ● 我承认使用 <插入名称和 url> 创建此演示文稿中包含的图像 ● 没有将任何由 AI 技术生成的内容作为我自己的作品呈现 ● 描述信息或材料是如何生成的 ● 提供您使用的提示或问题的描述、生成的输出以及学生如何修改材料以纳入他们的评估。
摘要 随着当前在线学习环境的实施,转向在线教学已成为各国提高教学可持续性的最明显方式。研究表明,英语科目的在线学习和教学影响认知策略环境。本研究旨在确定和探索在线学习环境中实施的认知策略,以支持英语学习者的批判性思维。本研究是一项利用调查方法在线完成的定量描述性研究。样本选择方法是简单随机抽样。本研究通过互联网向 115 名受访者分发问卷来收集原始数据。数据是通过完成调查中提供给所有受访者的问题来收集的。此外,对数据进行了评估,以便对其进行表征和描述。英语讲师调查的数据分析结果表明,在线教学中使用的认知策略是繁荣和挥霍的。实施在线英语学习者的批判性思维所需的认知策略包括程序性、元认知、概念性和战略性。本研究表明,在线学习的认知策略实施在远程教学中通常是有利的。调查显示,只有 73% 的英语讲师认为认知策略在线平台与传统会议一样有利于支持批判性思维。问卷调查获得了积极的回应。此外,该声明与他们的在线教学经验和背景相关,这表明他们对在线学习机制中运作良好的认知策略持良好态度。研究表明,必须发展在线教学法和英语讲师,为未来潜在的真实在线策略铺平道路。这项研究可能说明了在线教育的困难和潜在的改进领域。关键词:认知策略、在线英语学习者、批判性思维、
数学逃脱挑战 MS 和 HS - 5 个密室中的 5 个。■ 练习室 - 使用以前的 MESA Day 密室,让学生练习解决前几年的数学问题以及密室部分。主管将联系 Rose (rcureton@pacific.edu) 获取练习登录信息。■ 密室活动 - Brain Chase 提供在线密室(没有数学问题需要解决!),可以作为娱乐活动。这可以帮助学生和教师熟悉 Brain Chase 平台以及密室的机制。这是一种向学生介绍密室的有趣方式,而不必担心解决数学问题。中心主管可以购买这些房间,用作数学逃脱比赛前的无压力、有趣的补充活动。费用列在 BrainChase 网站上。
1964年成立的Tiruchirappalli国家理工学院是该国最佳的技术机构之一,在NIRF排名2022年的工程类别中排名第8。 nit Trichy有17个学术部门,并提供10个学士学位,40个硕士和17个博士学位课程。 这个58岁的研究所每年平均有2000名学生和约150名博士学位。 该研究所的信用近接近6500 sci索引文章,引用为1,00,000,H索引为105。 NIT Trichy拥有一个非常充满活力的校园,具有活跃的IPR牢房,初创企业和孵化中心,创新促进中心,最先进的研究实验室的推力地区卓越中心。1964年成立的Tiruchirappalli国家理工学院是该国最佳的技术机构之一,在NIRF排名2022年的工程类别中排名第8。nit Trichy有17个学术部门,并提供10个学士学位,40个硕士和17个博士学位课程。这个58岁的研究所每年平均有2000名学生和约150名博士学位。该研究所的信用近接近6500 sci索引文章,引用为1,00,000,H索引为105。NIT Trichy拥有一个非常充满活力的校园,具有活跃的IPR牢房,初创企业和孵化中心,创新促进中心,最先进的研究实验室的推力地区卓越中心。
参考[1] Hou,Saihui等。“通过重新平衡来逐步学习统一的分类器。”CVPR2019。[3] Liu,Yaoyao,Bernt Schiele和Qianru Sun。“用于课堂学习学习的自适应聚合网络。”CVPR 2021。[4]刘,Yaoyao,Bernt Schiele和Qianru Sun。“ RMM:用于课堂学习学习的增强记忆管理。”神经2021。[5] Rebuffi,Sylvestre-Alvise等。“ icarl:增量分类器和表示学习。”CVPR2017。[6] Li,Zhizhong和Derek Hoiem。“学习而不会忘记。”TPAMI2017。
和创业活动。关于 FDP:这项关于计算机视觉、医学成像和物联网应用的人工智能 (AI) 的教师发展计划 (FDP) 将帮助教育工作者和研究人员了解人工智能基础知识以及它如何应用于具有多种安全应用的医学成像和物联网技术。参与者将探索机器学习和深度学习概念,重点是将人工智能和物联网用于医学成像,这有助于诊断、医疗保健、农业、零售和监控系统。人工智能在计算机视觉中发挥着关键作用,它基于面部识别、虹膜识别、指纹分析和语音识别实现准确有效的身份验证方法。通过实践活动和现实世界的例子,与会者将获得在教学和研究中有效使用人工智能和不同算法的实用技能。到课程结束时,参与者将准备好将人工智能工具整合到他们的工作中,提高他们用现代技术教学和解决安全挑战的能力。这将使参与者受益,提高他们在这些关键领域的专业知识和教学能力。主要课程内容:•物联网架构、通信协议、计算机视觉简介、大数据分析、IIOT、生物医学和医学图像分析应用。•机器学习基础、数据预处理和数据可视化。监督和无监督学习方法、神经网络和应用。•深度学习方法简介,以及基于DL的其他架构及其应用。•用于计算机视觉、生物识别和医学成像实现的CNN架构。•用于医疗监测、精准农业、医疗诊断、工业应用的AI/IoT。•用于生物医学成像、基于CT扫描/MRI的图像分析、眼底和医学图像分类的AI/ML。•对象检测/跟踪算法,如Yolo等,分割算法,如UNET等。•使用Tensor Flow/PyTorch进行活动/生物识别。•Tensor Flow/Keras/PyTorch/Jupyter和Colab的基础知识。•使用python/MATLAB进行数据预处理和数据可视化。•使用Python/MATLAB进行实践课程。 • 在 Jetson Nano、TX2 和 PYNQ 等硬件平台上实现 CV 和 AI 算法。 • 负责此课程的教师:该课程将由 NIT Warangal 的教师负责;来自 IIT/NIT/IIIT 相关领域的学者受邀在该课程中授课。来自行业的演讲者也有望作为课程的一部分进行演讲。注册费详情:教师和研究学者 750 卢比/- 行业参与者 2250 卢比/-
