过去,德国对地表运动的研究非常广泛,尤其是在活跃矿井领域。德国活跃的硬煤矿最终于 2018 年关闭,预计褐煤开采将持续到 2038 年。德国矿山运营商所谓的长期责任包括长期保证稳定性以及监测地表运动等。到目前为止,德国地下采矿的经济用途主要是原材料供应。未来,压缩空气、甲烷或氢气的地下储存将在可再生能源供应和气候变化中发挥重要作用。因此,地下储存空间将变得更加重要,空间规划对于确保为各种环保能源储存方案提供安全的地下开口至关重要。然而,这种地下开口的重新使用也可能带来新的、有时是未知的地质力学影响挑战。硬煤和褐煤开采的后果将是采矿沉降工程面临的越来越大的挑战。另一方面,地下空间规划带来的新可能性可能会导致地表下沉和/或隆起。2020 年由 Elsevier BV 代表中国矿业大学出版。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
ACER 欧盟能源监管机构合作机构 AGGM 奥地利天然气管网管理局 AGSI 天然气储存总量(链接) ASGM 奥地利战略天然气储存管理 ASMR 国家物资储备局 CAPEX 资本支出 CEER 欧洲能源监管机构理事会 CfD 差价合约 DSO 配电系统运营商 EBRD 欧洲复兴开发银行 EC 欧盟委员会 EEX 欧洲能源交易所 EU 欧盟 FSRU 浮式储存和再气化装置 GIE 欧洲天然气基础设施 GIS 天然气储存 GME 能源供应商 GSE 能源服务供应商 GWV 天然气工作量 HUSA 匈牙利碳氢化合物储存协会 IP 互连点 LNG 液化天然气 MS 成员国 NRA 国家监管机构 OPEX 运营支出 PSV 虚拟兑换点 SBU 标准业务部门 SSBO 战略储存期权 SSO 储存系统运营商 THE 欧洲交易中心 TPA 第三方访问 TSO 输电系统运营商UGS 地下天然气储存 UIOLI 使用或损失 VAT 增值税 VGS 虚拟地下储存 WACC 加权平均资本成本
我们制定了一套三阶段标准来选择潜在的氢储存地点。在第一阶段,我们的筛选方法结合了综合地球科学和环境因素,以确定哪些油田不适用于氢储存。在第二阶段,我们对通过第一阶段筛选标准的油田应用了基于数值模拟的选址标准。我们从北加州的 182 个枯竭的地下储存油田开始筛选,其中 147 个油田在第一阶段被取消资格。我们使用基于数值模拟的选址标准,根据其余 35 个油田最大限度储存和提取氢气的潜力对其进行评分和排名。地下氢储存和生产得分最高的十个地点是倾角在 5° 到 15° 之间的储层、储层孔隙度在 20% 以上、储层流量在 5000 mDm 以上以及储层深度在 430 m 到 2400 m 之间的储层。这十个高分地点的总估计氢储存容量为 2.035 亿吨氢气。我们的选址标准集有第 3 阶段,要求对选址进行详细的表征。在第 3 阶段,我们收集了高分选址的额外岩石和流体特性,以便详细模拟与氢储存和提取相关的过程。我们在本文中没有涉及第 3 阶段。
在地质构造中地下储存氢气可能是一种廉价且环保的中长期储存方式。氢气可以储存在地下的不同层中,例如含水层、多孔岩石和盐洞。22 需要指出的是,盐洞并不是自然存在的。相反,它们是地下盐层中的人工空腔,是在溶液开采过程中通过注水控制岩盐溶解而形成的。23 虽然地下氢储存类似于天然气储存,并且已在美国和英国的盐洞中得到证实,但地质结构的选择、工艺危害和经济性、法律和社会影响等挑战可能会阻碍其商业应用。Tarkowski 和 Uliasz-Misiak 之前的研究中已经充分记录了这些挑战。24 在另一项研究中,同一作者回顾了阻碍大规模利用地下氢储存的障碍。 25 二氧化碳排放许可成本增加和“绿色氢”成本下降等因素是大规模实施地下氢储存的关键考虑因素。天然氢已在世界各地发现,包括阿曼、新西兰、俄罗斯、菲律宾、日本、中国以及意大利和法国西阿尔卑斯山 10,26 – 28
1第1节IC 14-39-2-4,由P.L.163-2022,2第2节添加,以如下读取[有效[2025年7月3日生效]:sec。4。(a)如果至少两个(2)个孔隙空间所有者拥有位于5个存储设施的拟议二氧化碳存储区域内的4个孔隙空间,则所有者可以同意将他们的兴趣集成到6个孔隙空间,以开发孔隙空间,作为拟议的储存设施,用于7个地下二氧化碳地下存储。8(b)如果第(a)款规定的所有孔隙空间所有者都不同意整合他们的利益,则该部门可能会发布订单10,要求所有者将其兴趣整合并开发孔11空间,并将其作为拟议的存储设施,作为拟议的存储设施,作为12碳二氧化碳的地下储存设施,以12碳二氧化碳利益为公共利益服务,以适应该发现,以适应13次分别(c)(c)(c c)。14(c)在根据第(b)款发出命令之前,部门15必须做出以下调查结果:16(1),已向存储运营商发行了UIC VI类许可证17或修订的UIC VI类许可证。
第 9 部分 — 爆炸物储存 第 1 部分 — 初步事项 74. 所用术语:安全 58 第 2 部分 — 许可要求 75. 未经授权的爆炸物 59 76. 授权的爆炸物,储存许可(附表 6) 59 77A. 爆炸物运输许可证授权储存某些运输中的爆炸物 59 77. 爆破许可证授权有限储存 60 78. 烟火(特殊用途)许可证授权有限储存 61 79. 烟花承包商许可证和烟花操作员许可证授权有限储存 62 第 3 部分 — 储存第 6 附表爆炸物 81. 本部分的应用 62 82A烟花棒 62 82. 安全装置等的弹药筒 64 83. 射钉枪等的弹药筒 64 84. 应急装置 64 85. 弹药推进剂和黑火药 64 第 4 部分 — 根据爆炸品储存许可证以外的许可证和许可证进行储存 86A. 由爆炸品运输许可证持有人储存 66 86. 射击许可证持有人,储存人 67 87. 烟火(特殊用途)许可证持有人,储存人 67 88. 烟花承包商许可证持有人,储存人 68 89. 烟花活动许可证持有人,储存人 68 第 5 部分 — 根据爆炸品储存许可证进行储存 90. 一般要求 69 91. 地下储存、弹药库要求 70
摘要。可再生能源发电成本的下降,加上电解技术的进步,表明绿色氢气生产可能是正在进行的能源转型中的可行选择。然而,绿色氢经济不仅需要生产解决方案,还需要存储选项,而这已被证明具有挑战性。一种尚未得到充分探索的解决方案是在套管井或竖井中地下储存氢气 (H 2 )。它的集成将带来实施的多功能性和广泛的适用性,因为它不需要特定的地质背景。本文的目的是评估这种新存储技术的技术可行性。准确预测温度和压力变化对于设计、材料选择和安全原因至关重要。这项工作使用基于质量和能量守恒方程的数值模型来模拟套管井中的储氢操作。研究表明,腔壁处的传热强烈影响温度和压力变化。这种影响因钻孔的几何形状提供显着的接触面积而加剧。因此,这种技术可以缓解极端压力和温度变化,并且在给定压力约束的情况下产生比传统洞穴更高的氢密度。结果表明,半径为 0.2 m 时,在最大压力为 50 MPa 时可达到 30 kg m − 3 的氢密度。在 4 小时内注入时,系统在最高温度和压力方面的响应相对线性,但随着注入时间的缩短,系统很快变为非线性。优化初始存储条件似乎对于最大限度地降低冷却成本和最大限度地提高存储质量至关重要。
代表着下一次重大工业革命,它不仅为子孙后代提供了宜居健康环境的前景,也为创新知识和技术领导地位提供了经济机会 [2]。首先,必须持续全面地扩大太阳能、风能、水能、环境热能和生物质能等可再生能源的使用。扩大以绿色电力为主的发电量可确保供电安全、增加当地价值,并通过零排放提高生活质量。为缓冲发电波动并作为存储介质,绿色氢气是通过电解绿色电力中的水(“电转氢”)生产的,尤其是在用电高峰期间。氢气也可以直接从太阳能中生产,例如通过光电解 [3、4]。然后,绿色氢气被储存并输送到捆包、拖车、集装箱、大型储罐、地下储存设施或(天然)天然气网络中。作为一种无碳能源载体,氢气通过与电化学电池的转换实现材料封闭和零排放的循环 [5]。绿色电力和绿色氢能可以满足交通、工业、家庭和能源服务等所有最终能源需求。世界各地正在加大力度推动这场工业革命和经济脱碳[6e8]。本文提出了一条通往可持续氢能社会的道路。第2章介绍了全球能源体系的现状。第3章详细概述了绿色氢能时代的相关技术。第4章介绍了技术转型以及考虑到财务和组织条件的在全球范围内实施可持续氢能社会的建议,并以奥地利为例。最后,第5章概述了用绿色电力和绿色氢能取代化石能源载体的最佳实践示范项目。
2021 年 12 月 15 日,欧盟委员会提出了一项规范能源部门甲烷减排的提案。该提案是“适合 55 年”一揽子计划第二批提案的一部分,旨在使欧盟气候和能源法规与欧盟气候法的 2030 年目标保持一致。本简报对委员会对上述提案的影响评估 (IA) 的优势和劣势进行了初步分析,该评估于 2021 年 12 月 15 日通过并提交给环境、公共卫生和食品安全委员会 (ENVI)。该提案包含在 2021 年委员会工作计划(见附件一)和 2022 年欧盟立法优先事项中(见委员会工作文件)。该提案旨在解决现行立法中的漏洞:涉及上游石油和化石气勘探和生产产生的甲烷排放,以及化石气的收集和加工以及下游勘探(如天然气的输送、分配和地下储存,以及使用化石和/或可再生甲烷的液化气终端)产生的甲烷排放。该提案还引入了有关煤矿和欧盟以外地区甲烷排放的规定,涉及进口商信息要求、甲烷透明度数据库和甲烷排放者监测工具。同样,它规定了甲烷减排、监测和报告、泄漏检测和修复以及排放和燃烧 (V&F) 限制的要求。1 2021 年 10 月 21 日,议会通过了一项关于欧盟减少甲烷排放战略的决议,其中呼吁委员会提出针对能源部门的立法,涵盖监测、报告和核查 (MRV) 以及泄漏检测和修复 (LDAR)。在能源领域,该决议支持委员会在甲烷战略中所表达的关于制定排放和燃烧立法的意图。议会还鼓励委员会制定化石能源进口监管工具并建立独立的国际甲烷排放观察站。
图 1. 2021 年纽约州裸眼井和封堵井数量 ...................................................................... 3 图 2. 纽约州每年完工的石油和天然气井数量 .............................................................. 4 图 3. 2021 年产气井的年龄分布 ...................................................................................... 5 图 4. 纽约州的石油和天然气产量 ...................................................................................... 6 图 5. 2021 年累计石油和天然气总产量百分比与纽约州油井数量之间的关系 ............................................................................. 7 图 6. 2021 年纽约州石油和天然气井位置和产量 ............................................................................. 8 图 7. 纽约州及周边各州的石油和天然气井、天然气加工厂、天然气管道、天然气地下储存和页岩气田位置 ................................................................................................................ 9 图 8. 纽约州天然气公用事业服务区 ............................................................................................. 10 图 9. 石油和天然气系统图 10. 确定天然气系统逸散性 CH 4 排放估算方法的决策树.........................................................................................................................................27 图 11. 确定石油系统逸散性 CH 4 排放估算方法的决策树.........................................................................................................................................28 图 12. 1990 年至 2021 年纽约州的 CH 4 总排放量(AR5 GWP 20)....................................................................................................................108 图 13. 1990 年至 2021 年纽约州的上游 CH 4 排放量(AR5 GWP 20)....................................................................................................108 图 14. 1990 年至 2021 年纽约州的中游 CH 4 排放量(AR5 GWP 20)....................................................................................................................109图 16. 2021 年下游、中游和上游 CH4 排放量占总排放量的百分比 ............................................................................................................. 111 图 17. 2021 年纽约州按来源类别并按上游、中游和下游阶段分组的 CH4 排放量(AR5 GWP 20) ............................................................................................. 112 图 18. 前五大排放源类别中 CH4 排放量的百分比 ............................................................................................. 113 图 19. 2021 年纽约州各县 CH4 排放量地图(AR5 GWP 20) ............................................................................................. 124 图 21. 帝国大厦发展公司确定的纽约州经济区域.... 131 图 22.2021 年纽约州各经济区域的 CH 4 排放量(AR5 GWP 20) ...... 132 图 23. 使用 AR5 GWP 20 CH 4 换算因子比较 1990 年和 2021 年纽约州源类别 CH 4 排放量 ................................................................................................................................ 134 图 24. 图 ES-11 的复制品(EPA 2023),显示能源和其他部门排放的时间序列趋势 ................................................................................................................................ 135 图 25. 包括最佳估计值和上下限的总排放量(AR5 GWP 20) ................................................................................................................................................ 141 图 26. 包括上限和下限的上游排放量(AR5 GWP 20) ............................................................................................................................................. 142 图 28. 包括上限和下限的下游排放(AR5 GWP 20)...................................................................................................... 142