1985 年 11 月,CSIR 建筑技术部(当时称为国家建筑研究所)开始对比勒陀利亚东郊的七个钻孔进行试点研究。1987 年 4 月,水研究委员会拨款将该项目扩展到整个比勒陀利亚地区。该项目的主要目的是量化从私人钻孔抽取的地下水量。次要目标包括监测地下水位变化、地下水质量以及评估未来对地下水资源需求大幅增加的可能性。
摘要:针对受天气异常影响的干旱现象和水动态的高分辨率监测系统有限,这在多方面阻碍了政策决策。本文介绍了高分辨率水监测系统 (WMS) 的可用性,该系统由复杂的多光谱卫星图像、分析和数据科学以及云计算相结合开发而成,用于监测局部尺度上的水位变化和植被水分胁迫。WMS 在 2021 年 1 月至 2021 年 4 月(旱季)期间在湄公河下游地区 (LMR) 案例流域泰国的 Chi River 流域进行了测试。VHI、VCI、TCI 和 NDVI 干旱模拟结果的总体质量与水库和大坝水量数据呈现统计上的正 Pearson 相关性(介于 0.399 和 0.575 之间),但与地下水位数据呈现强烈的负相关性(介于 -0.355 和 -0.504 之间)。应考虑进一步研究和更详细地分析与地下水位变化相关的不同物理环境条件的影响,以增加科学知识和从当地视角了解当地系统变化性质的理解,并在数据贫乏地区使用干旱指数。我们的结果表明,WMS 可以提供局部和情境化地表水变化的定量时空变化作为初步分析。WMS 结果可以为寻找适合当地条件的更好的较小单元管理提供指导,例如水资源管理、灾害风险减少措施(即干旱和洪水)、灌溉实践、土地利用规划和作物管理。现有的 WMS 面向水和农业发展的早期预警、可持续发展目标的进展、数字创新的利用以及提高决策者更早、更准确地监测和预测极端天气事件的能力。
摘要。恢复排水和提取的泥炭地可能会将其返回到二氧化碳(CO 2)下沉量,从而充当显着的气候变化缓解。ever,恢复的站点是否会保留下沉或切换到气候变化的来源是未知的。因此,我们调整了CoupModel,以模拟生态系统CO 2频道以及恢复的沼泽的相关影响因子。研究地点是加拿大东部的泥炭地,被提取了8年,并在恢复前离开了20年。与净生态系统交换(NEE),表面能量,土壤温度前纤维和地下水位深度数据的涡流协方差测量的3年(代表14-16岁)相比,对模型输出进行了第一次评估。进行了灵敏度分析,以评估所含有的CO 2倍数对新生长苔藓的厚度的响应。然后使用经过验证的模型来评估对气候强迫变化的敏感性。coupmodel重现了测得的表面能池,并与观察到的土壤温度,地下水位深度和NEE数据显示出很高的一致性。当将新生长的苔藓和Acrotelm的厚度从0.2到0.4 m更改时,模拟的NEE略有不同,但对于1 m厚的厚度显示出明显较小的吸收。在3个评估年中,模拟的NEE为-95±19GCM-2 Yr-1和-101±64GCM-2 Yr-1,范围从-219到 + 54GCM-2 yr-1,具有扩展的28年Cli-Mate数据。经过14年的恢复,泥炭地的平均CO 2摄取速率与原始地点相似,但年际变化较大,并且在干燥的年份中,重新存储的泥炭地可以切换回临时CO 2源。该模型预测CO 2吸收的中等减少,但如果泥炭地在生态和水文上恢复,则在未来的气候变化条件下仍然是合理的下沉。
近几十年来,人们一直关注气候变化以及确保全球平均气温上升不超过工业化前水平 1.5ºC 所需措施。因此,未来,极端天气事件、地下水位下降和生物多样性丧失带来的挑战将变得越来越重要。这些条件增加了对可持续解决方案的需求,这些解决方案可以减少气候影响、更有效地利用资源并使社会适应不断变化的气候。这鼓励我们创新新的解决方案,例如工业数字化、包括环境和健康和安全在内的可持续服务以及包括原材料、能源和水效率在内的整体效率。
图 1:圆形和狭窄的流域面积 ...................................................................................................... 9 图 2:水文循环 ...................................................................................................................... 10 图 3:侵蚀类型 资料来源:Calgary 2017 .............................................................................. 12 图 4:雨滴侵蚀示例 资料来源:(USDA 2021 ...................................................................... 12 图 5:片蚀/沟蚀示例 ............................................................................................................. 12 图 6 土壤质地三角形 ............................................................................................................. 14 图 7:植被减少,侵蚀加剧 ............................................................................................. 15 图 8:坡度角度对地形因子的影响 ............................................................................................. 19 图 9:坡度平坦化导致的侵蚀净减少量 ............................................................................................. 19 图 10:植被覆盖和无植被覆盖坡度的比较 ............................................................................. 20 图 11:土壤可蚀性列线图 ............................................................................................................. 23 图12:浅坡移动填筑沟渠 ...................................................................................... 28 图 13:高地下水位的砂砾石地层破坏 ...................................................................... 30
受盐的土壤是影响农作物植物产量的强大环境变量之一,因为不同的农作物植物易受着各种盐浓度水平的影响,这是低地下水位水平的结果以及适当的灌溉实践。由于全球干旱地区每年没有足够的降雨量,因此可以从植物根部积累的土壤盐分可以增强土壤盐度。为了超越土壤盐度问题,需要采取许多适应,缓解政策和战略策略。可以通过使用适当的灌溉,浸出,耐盐的更好的农作物品种和有益的土壤微生物来缓解它。土壤微生物促进有机物的解离,增加养分的可用性,改善植物遗传多样性,促进植物生长,促进激素,并最终提高作物生产率,环境稳定性,生态系统服务和粮食安全。
农业是印度民众生计的关键,是水的主要消费者,该国约有83%用于农业使用。然而,导致洪水和干旱周期的不稳定的降雨模式导致了作物失败。此外,对农业地下水的密集依赖已导致地下水位大幅下降。向农民补贴的电力提供进一步加剧了这种情况,促使地下水过度抽水,导致各个地区的地下水位耗尽了4米。当务之急是在农业部门采用可持续灌溉方法来提高用水效率,最大程度地减少损失和保障水质。从传统的洪水灌溉过渡到单独的滴灌可能会使用水的使用量减少40%。此外,对低地米饭实施替代润湿和干燥(AWD)技术,采用具有压力调节器和喷嘴的精确洒水器来进行均匀的水分配,利用土壤水分传感器来实时数据进行土壤水分的实时数据,从而采用覆盖物,以减轻越来越多的批准,以减轻越来越多样化的液体,以供越来越多样化,用于越来越多样化,用于越来越多样化,用于越来越多样化,越来越多样化,越多地灌溉,越多样化的水平,越来越多样化,以灌溉的限制,并采用摩擦。有效的雨水收集等是减少农业中用水的关键途径。政府干预对于教育民众有效的水利用率至关重要。在大多数州没有水费或收费强调了适当定价和相关服务的必要性。这种方法可以激励减少浪费,污染,增加与水相关的基础设施的投资以及对流域服务的增强欣赏。在七个州的8220村Atal Bhujal Yojana Panchayats上运营的基于社区的计划,已证明有助于增强村民对水的可用性和使用方式的理解,从而使它们能够明智地管理用水。旁遮普邦的“ Pani Bachao Paisa Kamao”之类的举措激励农民减少地下水的使用。所有利益相关者有责任唤醒有效的用水量,最大程度地减少浪费,以确保对子孙后代的安全水的遗产。
泵测试是在泵运行时对泵站性能进行的现场评估。它包括测量总扬程、泵容量和输入马力,然后计算总泵站效率,即泵和电动机或发动机的综合效率。泵测试需要进入井筒内部测量地下水位、准确测量流量以及准确测量灌溉系统的水压。泵测试得出的总泵站效率将低于制造商的泵性能曲线中的碗式效率,因为泵测试中包含了电动机或发动机的效率。泵测试主要通过泵经销商进行。通常会提供回扣计划来支付很大一部分测试费用。泵站效率高于 60% 通常表示无需采取纠正措施,效率为 50% 至 60% 表示可能需要采取纠正措施,效率低于 50% 则表示需要采取纠正措施。但是,这些一般准则也有例外,如下一节所述。