太赫兹 (THz) 时域光谱有助于深入了解半导体异质结构中的电子动力学。高场 THz 光谱探测 GaAs 量子阱 (QW) 系统的激子非线性响应,并能够在时域中测量其相干动力学。因此,THz 光谱可以让人们探索多体相互作用的基本特性以及半导体纳米器件技术的潜力。这项工作使用计算方法分析了半导体微腔中的光物质相互作用。当 QW 微腔中的激子与腔光子强耦合时,会形成一种称为激子极化子的新准粒子。本论文表明,具有光学和 THz 激发的经典耦合谐振子可用作模型来模拟激子极化子动力学及其量子相干现象。通过采用激子模式的时间相关衰减和改变光脉冲和 THz 脉冲之间的延迟,演示了激子-光子耦合系统的时间演化。由于强光物质杂化,在频谱中观察到正常模式分裂。最后,将本工作计算出的激子-极化子振荡与使用半导体布洛赫方程获得的参考计算结果进行了比较。
2,4-二甲基苯酚(2,4-DTBP)是一种重要的商业抗氧化剂和有毒的天然二级代谢产物,已在人类中检测到。但是,关于其毒理学作用的信息很少。我们询问2,4-DTBP是否是潜在的肥胖原。使用人间充质干细胞脂肪形成测定法,我们发现暴露于2,4-DTBP导致脂质积累和掺杂标记基因的表达增加。拮抗剂测定法表明,通过激活过氧化物酶体增殖物激活受体(PPAR)γ-肉变素X受体(RXR)异二聚体来增加脂质的积累。2,4-DTBP可能通过激活RXRα而不是直接与PPARγ结合来激活PPARγ /RXRα异二聚体。我们通过求解该复合物的晶体结构直接与RXRα直接结合,然后预测并证明相关化合物也可以激活RXRα。我们的研究表明,2,4-DTBP及相关化学物质可以通过RXR充当肥胖症和内分泌干扰物。这些数据表明,2,4-DTBP属于一个化合物家族,其内分泌干扰和肥胖作用可以通过其化学成分强烈调节。结构活性研究,例如当前的研究,可以帮助指导不与对人类发育和生理具有广泛影响的重要核受体相互作用的更安全的抗氧化剂的合理发展。
大量能源使用。几乎没有足够的空间来进一步改善电力转换,当需要在白天的可见度时,功耗变得特别高。解决这一问题的能量浪费的解决方案是使用反射性显示,也称为“电子纸”,这仅反映了环境光。这会导致功耗极低,[1]提高了明亮环境中的可见性和潜在的健康益处。[2]最近,出现了一个新的研究方向,重点是对等离子体结构颜色的积极控制[1,3],而电子纸是该领域的一个重要应用。但是,无论是否使用等离子纳米结构,证明其具有与散发性显示的性能相当的电子纸非常困难。[4]广泛的商业设备基于电泳墨水[5](Amazon Kindle等)且颜色模式下的图像质量差,这是通过包含红色,绿色和蓝色(RGB)滤镜的子像素来实现的。[6]此外,慢速开关(≈1s)可防止视频播放 - 将用法限制在电子阅读器和简单标签等应用程序中。电视技术是一种重要的电子纸技术,因为它提供了视频速度,[7],但在商业上仍然无法使用。当电影和闪烁完全消失在≈50hz时,人眼认为> 20 Hz的刷新速率> 20 Hz。通过LCD显示器可以实现如此快速的刷新率,但是在反射构型中,图像可见度[8](绝对反射率<15%)。有机和无机电致色素材料已成为可见光谱区域上高对比度极化独立转换的强大候选者[9],但是它们的响应时间通常太慢了视频显示的速度(对于过渡金属氧化物而言,数百个MS甚至更多)。通常认为,尽管结构颜色对于电致色素设备来说是非常有趣的,但是对于视频应用来说,开关不能足够快,尤其是如果对比度应该很高(≈50%的绝对反射率或传输变化50%)。对于导电聚合物,开关速度的局限性主要归因于在掺杂过程中电解质和聚合物膜中离子相对较慢的“差异”。[10]存在一些例外,例如聚隔离线,已知可以很快地改变质子化状态。[11]
Mohammad Al Mahfuz 1,2,(成员,IEEE),Sumaiya Afroj 3,探险家Rahman 4,医学博士。Azad Hossain 2,(成员,IEEE),医学博士。Anwar Hossain 5,(IEEE高级成员)和MD Selim Habib 1,(IEEE高级成员)1电气工程和计算机科学系,佛罗里达技术学院,墨尔本,佛罗里达州佛罗里达州佛罗里达州32901,美国2孟加拉国1000号孟加拉国工程技术大学,孟加拉国4电子和电信工程系,拉杰沙希工程大学,拉杰沙希6204,孟加拉国5号电气与电子工程系
超薄暗物质(ULDM)是领先的良好动机候选者之一,在粒子物理学和宇宙学标准模型之外,许多理论中都预测了这些候选。在物理和天文实验中搜索ULDM的兴趣越来越多,主要假设ULDM和正常物质之间还有其他相互作用。在这里我们证明,即使ULDM仅具有重力相互作用,它也应引起太阳系中的引力扰动,该引力扰动可能足够大,可以在未来的重力波(GW)激光干涉仪中引起可检测的信号。我们研究了米歇尔森时间 - 时间延迟干涉仪对各种自旋的ULDM的敏感性,并通过针对μHz频率的空间基GW检测器来探测具有质量m mass10-18 eV的向量ULDM。我们的发现表明,GW检测器可能会直接探测一些质量范围,否则否则挑战了。
图 5 显示了典型的开关模式。5 V 和 12 V 输出接收不同数量的能量包。主控制方案有效地消除了交叉调节效应,即一个输出上的负载会影响其他输出。但是,这种方法的一个明显缺点是会产生可听见的噪声。在每个周期中,都会向其中一个输出发送一个能量脉冲,由于每个输出具有不同的反射电压,因此变压器磁芯中磁能变化的速度也会根据哪个输出接收能量而变化。这种磁能变化将引起次谐波变压器激励频率,该频率低于主开关频率。该次谐波频率的性质取决于两个输出之间的负载分布。如果该次谐波频率在可听见的范围内,大约在 1 kHz 和 25 kHz 之间,则很可能会产生可以听到的声音。磁致伸缩效应将被变压器质量的共振频率放大,该共振频率通常也位于此区域。这种可听见的噪声是开关模式在特定条件下运行方式的副产品。
免责声明 本信息是根据美国政府机构资助的工作编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
光动力疗法(PDT)依赖于一系列导致细胞死亡的光学和光化学反应。虽然对各种癌症有效,但由于黑色素的高光吸收,PDT在治疗色素黑色素瘤方面的成功率较低。在这里,使用〜100 fs脉冲的近近红外激光光对光子坐骨的2-光子激发(2p -pdt)来解决此限制。使用色素和非有色的鼠类黑色素瘤克隆细胞系在体外阐明黑色素在启用而不是阻碍2p -PDT中的关键作用。比较了临床光敏剂(visudyne)和卟啉二聚体(Oxdime)之间的光循环毒素 - 比较600-倍倍高于σ2p值。出乎意料的是,尽管两种细胞系中的1p -PDT响应都是相似的,但2p激活在杀死色素方面比非色素细胞更有效,这表明黑色素2p -pdt具有主要的作用。在体内的结膜黑色素瘤模型中证明了临床翻译的潜力,在该模型中完全消除了小肿瘤。the工作阐明了在多 - 光子PDT中的黑色素贡献,从而使基于光的治疗方法可以提高,这些治疗以前认为在色素的肿瘤中不适合使用。
共享经济允许个人在共享平台上提供商品或服务,但是对于激励人们在这些平台中共享或提供的是什么知之甚少。本研究旨在分析什么激发人们作为商品和服务提供者参与共享经济的原因。一个具有五个决定因素的框架,以提供(货币补偿,灵活性,信任,便利和归属感)的意愿,并使用部分最小二乘结构方程建模在在线调查中收集的数据上开发和测试。结果表明,归属感对提供商品和服务的意愿具有重大的积极影响。令人惊讶的是,货币补偿对提供商品的意愿有重大的负面影响。具有相同的价值观,文化和共同利益被证明是与陌生人分享的主要动机,而不是像以前认为的那样赚钱。
偏见的双层石墨烯(BBG)是基于石墨烯 - 基于石墨烯的系统中兴奋性效应的重要系统,其易于调谐带隙。此带隙受外部门电压的控制,使一个人可以调整系统的光学响应。在本文中,我们研究了Bernal堆叠的BBG的激子线性和非线性光学响应,这是栅极电压的函数,包括平面(IP)和平面(OOP)方向。基于BBG电子结构的半分析模型,描述了栅极电压对激子结合能的影响,我们将讨论重点放在IP和OOP示例性响应上。线性和第二个谐波产生(SHG)非线性响应都对栅极电压非常敏感,因为带相互动量矩阵元素和系统的带隙都会随偏置潜力而变化。