CORD 认为,缓解 GLW 230kV 区域限制,同时改善 CAISO 南内华达地区的接入并输送丰富的可再生资源,将对 CAISO 电网未来的可靠性产生重大影响。CAISO 南内华达地区拥有极佳的太阳辐射;可接入地形优越的大片未分割区域;可利用内华达丰富的地热资源;与合格劳动力的距离相当近;许可环境稳定且可预测;与加利福尼亚州相比,濒危或受威胁物种少约 4 倍(截至 2016 年 7 月为 28:121);人口密度低。因此,该地区是可再生能源开发具有很高商业价值的地区,非常适合向加利福尼亚州提供及时、低成本、可靠的可再生能源,以帮助实现其温室气体 (GHG) 减排和可再生能源组合标准 (RPS) 目标。事实证明,目前该地区有超过 6,200MW 的可再生能源发电请求接入加州独立系统运营商 (CAISO) 电网。3
未来 10 到 20 年,加州将面临前所未有的新可再生资源需求。这一需求的增加是由客户对清洁能源的需求增加、交通运输和其他行业的持续电气化以及参议院第 100 号法案的要求推动的,该法案要求可再生能源和零碳资源在 2045 年前为终端用户提供 100% 的电力零售销售。这一转变不仅将推动对技术和地理分布多样化的资源(包括存储)进行大量投资,而且还将推动大量输电以适应所有新增容量。输电需求将包括穿越长距离以接入州外资源的高压线路,以及主要的发电区,包括位于州内的海上风电和地热资源。鉴于这些设施所需的前置时间主要是由于通行权收购和环境许可要求,ISO 发现,制定一个长期蓝图对于规划输电规划范围至关重要,而不仅仅是过去使用的传统 10 年时间框架。
俄勒冈州有两个地热发电厂。第一个于2010年完成,是克拉马斯瀑布(Klamath Falls)的1.75兆瓦设施,该设施为俄勒冈理工学院提供现场发电和空间供暖。第二个于2012年完成,是Vale附近的Neal Hot Springs地热发电厂。该设施的容量为22兆瓦,并为爱达荷州的电力提供电力。1自1981年以来,克拉马斯瀑布市自1964年以来就使用了地热区的地热区供暖系统。2 3湖景镇还为市中心供暖区使用地热能,并于2023年获得俄勒冈能源部的社区可再生能源开发赠款,以评估系统扩展的可行性。4附近,华纳溪惩教所使用地热井来提供空间供暖和家用热水。5这些设施位于马尔海尔,湖和克拉马斯县,展示了俄勒冈州的地热资源如何使该州一些最农村社区受益。
Laugarnes和Elliðaár领域是自1930年代和1970年代以来雷克雅未克地区供暖的地区供暖的低温地热资源。两个系统中的稳定储层压力表明,它们的充电已达到准平衡。在Laugarnes中,观察到近恒定排放温度,在资源的主要模型中,地层温度被解释为稳定,表明稳态的热流动。通常在这些模型中简化这是固定压力和温度充电,并且对支持此充电所需的热源尚不清楚。在这项研究中,提出了新的概念模型,其中从表面上充电正在从浅层地层中提取热量,因为它将其渗入更深的生产区域。为了定量测试这一点,建立了一个艰难的2个数值模型,其中数值模拟仅通过使用升高的导电热通量作为边界条件,成功地复制了自然状态和生产历史记录。结果表明,提出的热量提取如何支持储层的生产,这表明该系统是合理的热源。
未来 10 到 20 年,加州将面临前所未有的新可再生资源需求。这一需求的增加是由客户对清洁能源的需求增加、交通运输和其他行业的持续电气化以及参议院第 100 号法案的要求推动的,该法案要求可再生能源和零碳资源在 2045 年前为最终用户提供 100% 的电力零售。这一转变不仅将推动对技术和地理分布多样化的资源(包括存储)进行大量投资,而且还将推动大量输电以适应所有新增容量。输电需求将包括穿越长距离以接入州外资源的高压线路,以及主要的发电区,包括位于州内的海上风电和地热资源。鉴于这些设施所需的前置时间主要是由于通行权收购和环境许可要求,加州独立系统运营商 (CAISO) 发现,制定一个长期蓝图对于规划输电规划范围至关重要,而不仅仅是过去使用的传统 10 年时间框架。
本研究旨在评估目前市场上哪种材料可以克服腐蚀问题并承受火山环境中地热资源开采中的高腐蚀性条件。我们的调查是由 Lahendong 地热田(印度尼西亚北苏拉威西岛)的条件引发的:LHD-23 井是最大的挑战之一,因为它能够从单个井产生 > 20 MW 的能量,同时具有非常低的 pH 值(2 - 3)和相对较高的氯化物(1,500 mg/L)和硫酸盐(1,600 mg/L)浓度。选择了三种不同的钢种(低合金钢 UNS G41300、不锈钢 UNS S31603 和高合金不锈钢 UNS N08031),并通过短期电化学方法(动电位极化)和长期暴露试验(最长 6 个月)评估了它们的腐蚀行为。该研究在实验室中在 100°C(100 kPa)和 175°C(900 kPa)的人工 LHD-23 地热盐水(1,500 mg/L 氯化物、1,600 mg/L 硫酸盐、pH 2)的静止条件下进行,模拟现场的条件。
本研究旨在评估目前市场上哪种材料可以克服腐蚀问题并承受火山环境中地热资源开采中的高腐蚀性条件。我们的调查是由 Lahendong 地热田(印度尼西亚北苏拉威西岛)的条件引发的:LHD-23 井是最大的挑战之一,因为它能够从单个井产生 > 20 MW 的能量,同时具有非常低的 pH 值(2 - 3)和相对较高的氯化物(1,500 mg/L)和硫酸盐(1,600 mg/L)浓度。选择了三种不同的钢种(低合金钢 UNS G41300、不锈钢 UNS S31603 和高合金不锈钢 UNS N08031),并通过短期电化学方法(动电位极化)和长期暴露试验(最长 6 个月)评估了它们的腐蚀行为。该研究在实验室中在 100°C(100 kPa)和 175°C(900 kPa)的人工 LHD-23 地热盐水(1,500 mg/L 氯化物、1,600 mg/L 硫酸盐、pH 2)的静止条件下进行,模拟现场的条件。
第一个现代区供暖系统是在爱达荷州博伊西开发的。在美国西部,有271个社区,拥有地热资源。现代地区供暖系统为俄罗斯,中国,法国,瑞典,匈牙利,罗马尼亚和日本提供房屋。世界上最大的地区供暖系统位于冰岛的雷克雅未克。自从冰岛首都开始使用地热能作为其主要热源以来,曾经受到污染的雷克雅未克已成为世界上最干净的城市之一。除了提供室内舒适性和家用热水外,还以某些创造性的方式使用了地热热。克拉马斯瀑布,俄勒冈州,是美国最大的地区供暖系统之一,是道路和人行道下的地热加热水,以防止在冰冻天气中结冰。新墨西哥州将载有地热的水的一排载有植物或蔬菜生长的管道。这提供了更长的生长季节和室外植物的更快生长。您的社区如何从地热区供暖中受益?进行一些研究,并为您的本地规划部门或当地开发人员制定建议。您应该包括以下元素:背景;机会;利益和障碍;并采取了行动。
抽象的盐水盐水目前被带到地表以在加利福尼亚州萨尔顿海地区产生地热能,其中含有高浓度的锂,在将盐水重新注入地热储层之前可能会提取。这将为美国生产基于锂的电池的国内采购锂的新供应链,这将有助于推动过渡到可再生能源网格。计划在Salton Sea已知地热资源区域考虑扩大地热生产以及锂提取的计划。我们讨论了与这种地热扩张和锂产量相关的水污染的潜在问题,并在对科罗拉多河流域的水提取物的潜在限制下。我们估计,对当前提议的地热生产和锂提取设施的水需求仅占该地区历史供水的4%。区域水分配将受到科罗拉多河从现在到2050年从科罗拉多河分配的拟议切割的影响,而不是与地热生产的扩展和相关的锂提取。将来准确地计划水需求将需要有关锂提取和精炼过程的水需求的更多特定信息。
不要添加到大气中的CO 2 - 理想情况下会隔离并积极地绘制大气CO 2。不使用更多的自然土地 - 因此它将是海上。按比例和速度开发 - 在最小化延迟的单个最佳实践许可方案下。具有最小的环境影响 - 在单个协议下独立监控以保持一致性。根据当地需求和全球经济学,能够提供可靠,稳定的副产品(例如绿色氢或氨)。使用经过尝试和测试的技术 - 尽管有可能在新型组合中。不使用关键的矿物质 - 使用相对易于回收的材料,例如钢。不使用淡水 - 理想情况下将是淡水的净生产商。不会对现有的海洋生物产生负面影响 - 理想情况下会增强它,发展水产养殖并增强开放水域渔业。具有成本效益。我们的研究表明,大量的地热资源存在于世界的海洋和海洋之下,并且可以提供额外的绿色能源解决方案,该解决方案接近上面列出的理想情况。在国家和国际水域中,裂谷系统在岸上提供了世界上一些最高浓度的地热力量。