对益生元分子的搜索正式进入了詹姆斯·韦伯(James Webb)太空望远镜的新时代。船上近红外仪器的功能比在空间仪器中提供的敏感性和分辨率更高。计划推出更多近红外望远镜(例如2025年的Spherex),必须拥有手头上重要分子的实验室数据,以指导该频谱区域的观察结果。我们在这里介绍了1中的益生元乙二醇(HC 3 N)分子的第一个已发表的线列表。5 µm区域。 分子通过使用低温缓冲液冷却来冷却至20 K,从而获得了2ν1频段的分辨良好的RO振动状态,并使用蛀牙调查光谱探测并分配了分配。 使用PGOPHER计算旋转常数,并根据氰化氢测量光谱线强度。 我们建议HC 3 N 1。 5 µM条带作为Hycean和超级地球体的传播光谱的观察靶标。5 µm区域。分子通过使用低温缓冲液冷却来冷却至20 K,从而获得了2ν1频段的分辨良好的RO振动状态,并使用蛀牙调查光谱探测并分配了分配。使用PGOPHER计算旋转常数,并根据氰化氢测量光谱线强度。我们建议HC 3 N 1。5 µM条带作为Hycean和超级地球体的传播光谱的观察靶标。
首次采用了生成人工智能中最新的技术来构建血浆湍流的替代模型,以实现长时间的传输模拟。拟议的步态(生成人工智能湍流)模型基于卷卷变量自动编码器的耦合,该模型将已预先计算的湍流数据编码为减少潜在的神经网络和深层神经网络,并产生新的湍流,该新的湍流是400倍的湍流,该湍流是400倍的富指向数字集成。该模型应用于谷川 - 瓦卡塔尼(HW)等离子体湍流模型,该模型与地球体流体动力学中使用的准真实性模型密切相关。在时空傅立叶和适当的正交分解光谱以及以Okubo-Weiss分解为特征的流程傅立叶和适当的正交分解光谱中,步态和HW模型之间的一致性非常好。一致性也可以在粒子位移的概率分布函数和有效的湍流扩散率中找到。
abtract:在本文中,我们介绍了在洛林盐盆地和高级 - 荷马族杂质中选择的实验地点进行的地球物理研究的合成。这些研究是在使用高分辨率地震,微重力和电阻率的技术的伴有(科学和工业)研究计划(科学和工业)研究计划的框架内进行的。该研究的目的是三倍:(1)通过增强了每种技术的生成和优化的扫描和优化程序,以增强和优化P和S地震振动源,以定义特权应用程序领域,并定义有关地球体物理数据联合解释的一般站点(3)的一般环境(3)的限制。尽管数据的质量很高,但结果证明了腔体环境中地球物理反应的复杂性,这主要是由于分辨率和腔的比例深度/维度之间的妥协以及填充的性质(盐水,水,水,空气)的性质。在泥石雷矿山的情况下,相应的地球物理异常可以与根据档案记录所知的Marlpit的确切位置相关。钻探运动已经确认在唯一高分辨率地震数据上鉴定出的Marlpit的局部崩溃。k eywords:腔,检测,人力资源,微重力,电阻率,分辨率。
识别和储层相的表征是划定用于碳氢化合物勘探的储层的碳氢化合物区域的主要因素。地球物理日志是在钻孔附近测量的储层相的物理参数,在储层相的解释中起着至关重要的作用。本研究涉及使用地球物理原木上的机器学习(ML)技术在坎贝盆地中岩石BEL的岩性的识别。机器学习的监督技术,例如支持向量机(SVM),ARTI B CIAL神经网络(ANN)和K-Nearest邻居(KNN),用作非线性地球体物理原木岩性学的识别的非线性分类。使用网格搜索交叉验证(CV)方法优化了ML模型的超参数,如ConfusionMatrix评估,auctreceiver操作特性曲线(AUC),精度,召回和F1分数对促进性的促进症状效果。ML模型使用了两个井的地球物理参数,其中有四个已知的杰出岩性(class-a,class-b,class-c和class-c和class-c和class-c和class-c和class-class-c和class-class-class-c和class-class-class)。分别从混淆矩阵中分别为KNN,SVM和ANN的每个岩性的优化和训练的模型,分别以85.4%,87.0和88.9%的形式显示了对真实值的总体正确预测。因此,每个模型从评估参数中的准确性表明,对不同ML模型的组合分析选择优化的ML模型,以更好地实现和验证,以更好地实现和建模岩性。除此之外,接收器手术特征(ROC)还表明,每种岩性的曲线下的整体面积大于90%,其他评估参数(例如精度,回忆和F1得分)的准确性大于84%,除了SVM和ANN类C类D类和Ans类D类案例外。
参考文献[1] D. H. Staelin,A。H。Barrett,J。W。Waters,F。T。Barath,E。J。Johnston,P。W。Rosenkranz,N。E。Gaut,N。E。Gaut和W. B. Lenoir,“ Nimbus 5 Satellite:Microwave光谱仪5卫星:气象学和地球体物理学数据,Science,Science,Science,”。182,pp。1339–1341,1973。[2] W. L. Smith,“观察大气温度结构的卫星技术”,《美国气象学会公报》,第1卷。53,否。11,pp。1074–1082,1972年11月。[3] W. L. Smith,“卫星的大气响声 - 期望或改善天气预测的关键?”皇家气象学会季刊,第1卷。117,否。498,pp。267–297,1991年1月。[4] H. H. Aumann等人,“ Aqua Mission Airs/AMSU/HSB:设计,科学目标,数据产品和处理系统”,IEEE Trans。 Geosci。 遥感 ,卷。 41,否。 2,pp。 253–264,2003年2月。 [5] G. Chalon,F。Cayla和D. Diebel,“ Iasi:运营气象学的高级声音”,IAF第52届大会的会议录,pp。 1-5,2001年10月。 [6] W. L. Smith,H。Revercomb,G。Bingham,A。Larar,H。Huang,D。Zhou,D。Zhou,J。Li,X。Liu和S. Kireev,“卫星Nadir Nadir观看卫星的进化,当前功能以及未来的进步,可在低频谱中观察到下大气层的超光谱IR声音。” 化学。 Phys。,第1卷。 9,pp。 5563–5574,2009。 Geosci。 遥感,第1卷。 43,否。 11,pp。 2535–2546,2005年11月。 11。[4] H. H. Aumann等人,“ Aqua Mission Airs/AMSU/HSB:设计,科学目标,数据产品和处理系统”,IEEE Trans。Geosci。 遥感 ,卷。 41,否。 2,pp。 253–264,2003年2月。 [5] G. Chalon,F。Cayla和D. Diebel,“ Iasi:运营气象学的高级声音”,IAF第52届大会的会议录,pp。 1-5,2001年10月。 [6] W. L. Smith,H。Revercomb,G。Bingham,A。Larar,H。Huang,D。Zhou,D。Zhou,J。Li,X。Liu和S. Kireev,“卫星Nadir Nadir观看卫星的进化,当前功能以及未来的进步,可在低频谱中观察到下大气层的超光谱IR声音。” 化学。 Phys。,第1卷。 9,pp。 5563–5574,2009。 Geosci。 遥感,第1卷。 43,否。 11,pp。 2535–2546,2005年11月。 11。Geosci。遥感,卷。41,否。2,pp。253–264,2003年2月。[5] G. Chalon,F。Cayla和D. Diebel,“ Iasi:运营气象学的高级声音”,IAF第52届大会的会议录,pp。1-5,2001年10月。[6] W. L. Smith,H。Revercomb,G。Bingham,A。Larar,H。Huang,D。Zhou,D。Zhou,J。Li,X。Liu和S. Kireev,“卫星Nadir Nadir观看卫星的进化,当前功能以及未来的进步,可在低频谱中观察到下大气层的超光谱IR声音。”化学。Phys。,第1卷。 9,pp。 5563–5574,2009。 Geosci。 遥感,第1卷。 43,否。 11,pp。 2535–2546,2005年11月。 11。Phys。,第1卷。9,pp。5563–5574,2009。Geosci。 遥感,第1卷。 43,否。 11,pp。 2535–2546,2005年11月。 11。Geosci。遥感,第1卷。43,否。11,pp。2535–2546,2005年11月。11。[7] W. J. Blackwell,“一种从高光谱分辨率探测数据中检索大气温度和水分突出的神经网络技术”,IEEE Trans。[8] W. J. Blackwell,“从高分辨率红外和微波炉发声数据中的大气温度和水分发明的神经网络检索”,《遥感的信号和图像处理》,C。C。C. Chen,编辑。Boca Raton,佛罗里达:Taylor和Francis,2006年,Ch。[9] W. J. Blackwell和F. W. Chen,大气遥感中的神经网络。马萨诸塞州波士顿:Artech House,2009年。[10] W. J. Blackwell,M。Pieper和L. G. Jairam,“在存在云的存在下使用Airs/Iasi/AMSU对大气发明的神经网络估算”,Spie Asia+C遥感研讨会,2008年11月,[11] B. Lambrigtsen,S。Brown,T。Gaier,P。Kangaslahti和A. Tanner,“际调查路径任务的基线”,IEEE IGARSS会议记录,第1卷。3,2008年7月,pp。338–341。[12] W. J. Blackwell等人,“高光谱微波大气发声”,IEEE Trans。Geosci。 遥感 ,审查,2009年。Geosci。遥感,审查,2009年。