石油是农作物生产的基础,因为它为农作物提供必需的营养。然而,埃塞俄比亚的土壤肥力正在下降,主要是由于土壤管理不善,这反过来又影响了农作物的生产力。在所有必需营养素中,作物需要大量的氮 (N)。它是叶绿素和植物蛋白的关键成分。虽然氮是地球大气中最丰富的元素(占空气的 78%),但它是土壤中最缺乏的营养物质,也是农作物生产力的最常见限制因素(参考)。植物不能吸收大气中存在的氮。因此,必须将大气中的氮转化为活性或还原形式/转化为可用形式/以便植物可以使用它。微生物的生物固氮是将大气中的氮固定为植物可用形式的方式之一。固氮微生物完成约 90% 的天然固氮,因此是可持续农业发展的重要组成部分。固氮微生物有两种类型:自由生活(在植物细胞外)和共生(与植物内部共生)。
可见光摄像机能够使用波长范围从 0.4 到 0.7 µm 的电磁波记录适当照明的物体的图像。在波长超过 0.7 µm 的物体上成像非常有用,因为它可以揭示有关物体的更多信息并实现新的应用。然而,在更长的波长上成像需要配备特殊红外图像传感器和不同光学器件的摄像机 [1, 2, 3]。在众多类型的红外图像传感器和探测器技术中,有微测辐射热计,它实现了非制冷且价格实惠的热红外摄像机。这种热红外摄像机允许人们通过物体的辐射热(即通过普朗克辐射定律描述的红外辐射发射)获取物体的图像。微测辐射热计主要对长波红外 (LWIR) (8-14) µm 敏感,这与地球大气中的透明波段相吻合。与可见光摄像机一样,热红外摄像机在国防、交通、监控、消防、热成像和户外休闲方面具有许多应用和巨大的市场。许多新的应用领域都得益于微测辐射热计
简介第一颗人造地球卫星施普尼克1于1957年在椭圆形轨道上发射,围角度为215 km。在这些高度处,地球大气足够密集,可以使无塑形的卫星在几周内掉落。自第一次发射以来已经过去了几年,而太空推进的发展产生了卫星在太空中运行的方式发生重大变化。尽管如此,靠近地球的运营仍然是一个挑战。太空推进依赖于存储在板上的推进剂来产生推力,这将平台的寿命与存储的pellant量相关。降低手术高度意味着阻力的增加,并导致推进剂的增加。,但由于平台的大小和阻力受到质量质量的影响,因此对系统提出了严重的要求。空间任务需要找到使用现有资源的新有效方法。空气呼吸电动推进(ABEP)的概念依赖于航天器前面的入口来收集产生阻力的大气。使用电力,例如,从太阳阵列中收集,推进器然后将大气
摘要。化石燃料的燃烧日益增加,土地使用和林业的变化增加了地球大气中的CO 2。这种情况会增加地球的全球温度,从而导致气候变化。此外,稻草废物的数量非常丰富,最受欢迎的治疗方法是在稻田中燃烧。此过程也有助于空气污染和CO 2气体的增加。同时,稻草是含有纤维素和半纤维素的木质纤维素生物量,作为要转化为生物乙醇的糖来源。木质纤维素生物量转化率包括三个主要阶段,即预处理,水解和发酵。已经开发了将稻草转化为生物乙醇的过程。但是,目前的障碍是转换过程需要高能量,产生化学废物,并且对环保不友好。首选一种生物学方法,因此稻草转化过程变得更加可持续。本文回顾了在生物学上将稻草转化为生物乙醇的预处理,水解和发酵过程。因此,有望通过生物学和更环保的方法来应对现有的挑战。
太阳是研究粒子加速的得天独厚的地点,粒子加速是整个宇宙中一个基本的天体物理问题。极紫外 (EUV) 包含许多在太阳大气的所有层中形成的窄发射线,其轮廓允许测量等离子体的密度和温度等特性,以及诊断非麦克斯韦粒子分布的存在。唯一的观察方法是从太空进行,因为地球大气会吸收 EUV 辐射。积分场光谱与偏振测量相结合是研究太阳的关键,但目前的 EUV 技术存在局限性:光纤 IFU(积分场单元)的传输率很低,飞行中的效应会影响偏振测量。最好的解决方案似乎是图像切片器。然而,这项技术尚未为 EUV 光谱范围开发。本文探讨了一种新的高效紧凑的积分场光谱仪布局,该布局基于图像切片器的应用,将 IFU 的表面与光谱仪的表面相结合,适用于太空应用。关键词:EUV 光谱、积分场光谱仪、图像切片器、太阳仪器、空间仪器
太空碎片首次通过1957年10月的人工卫星卫星施普尼克(Sputnik 1)首次发射(NASA,n.d。)开始积聚在地球轨道上。从那时起,越来越多的废弃物体增加了潜在灾难的机会,包括诱导空间碎片的敲击作用,即凯斯勒综合征(国家空间中心,2021年)。这种影响可以消除地球的卫星基础设施,包括每天文明依靠的天气监测,导航和通信。,2020年,114个发射,大约有1,300颗卫星进入太空,而在2021年,该数字增加到了1,400个新卫星的发射(“多少,”,2021年)。主要是,空间碎片位于低地球轨道(LEO),位于地球表面2,000公里以内,尽管在赤道以上35,786公里的地静止轨道(GEO)中可以找到某些碎屑。在2021年,美国太空监视网络(USSSN)跟踪了超过0.1m的15,000块空间碎片。高度决定了卫星或碎屑返回地球所需的时间。在重新进入地球大气之前,几年的物体在600公里以下的轨道范围内,而几个世纪以上的物体将绕1,000公里的轨道轨道轨道(不列颠尼卡,n.d。)。
液氮什么是氮?氮是地球大气中最大的单一组成部分,是由恒星中的融合过程产生的。估计它是宇宙中质量中第七大量的化学元素。氮是纯元素,就像氧,金和汞都是纯元素一样。因为它在-196°Celsius时沸腾,因此纯氮是一种气体,占干空气量的78%,在干空气中重量为75.3%。何时发现氮?氮被正式认为是由丹尼尔·卢瑟福(Daniel Rutherford)在1772年发现的,后者称其为有害空气或固定空气。18世纪后期的化学家众所周知,有一小部分空气不支持燃烧。卡尔·威廉·舍尔(Carl Wilhelm Scheele),亨利·卡文迪许(Henry Cavendish)和约瑟夫·普里斯特利(Joseph Priestley)在大约同时研究了氮,他们将其称为燃烧的空气或态空气。氮气已经足够惰性,即Antoine Lavoisier从希腊语单词→杀耳码(Azotos)称为“ mephetic Air”或Azote,意为“毫无生气”。动物死在其中,它是动物窒息而火焰灭绝的空气的主要组成部分。氮如何分类?
摘要:热层是地球大气中最大的部分,并且由于它在如此高的高度(120-3000 km)的范围内,气态活性和分子数密度,每单位立方体的分子量,与大气层层相比,每单位立方体的分子数量,每单位单元的分子量变得难以测量和观察。为了解决此问题,我们可以咨询基本的化学动力学,以试图计算不同分子的稳态模型。气态颗粒在热层中的反应和相互作用都构成了一个系统,因此,简单模型的构建将有助于我们进一步研究和理解上层大气中发生的情况,使用我们已经知道的反应,并且可能揭示了我们不知道的某些气态行为。在我的项目中,我们特别希望构建一氧化氮数量密度填充物的稳态模型,因为它参与了许多光化学反应,从而导致其形成和变形。在动力学之外还需要咨询其他因素,在大气中进行了这种扩散的混合,但是可以使用为大气系统(称为Vulcan)构建的软件来咨询这些因素。我正在与詹姆斯·里昂(James Lyons)博士合作,以计算该模型并发展我对地球上层大气层的概念理解,并将该模型作为比较热层中一氧化氮浓度的比较的参考。
气候变化是二十一世纪人类面临的最大挑战之一。科学界达成了共识,即地球在10,000年内以最快的速度变暖,并且这种温度的变化是由于二氧化碳(CO 2)和地球大气中其他温室气体的增加引起的,尤其是在过去的100年中。这种增加是由于人为活性。大气中的温室气体目前相当于CO 2的百万分之400(PPM),而工业革命发生前仅280 ppm,如果当前趋势持续下降,每年将每年增加2 ppm(Stern,2007年)。根据工业前的温室气体的加倍,大多数气候模型都会在未来几十年中升高2°C至5ºC的全球平均温度升高。例如,稳定水平为450 ppm的CO 2等效物将意味着温度升高超过2ºC的可能性为78%,并且增加了3ºC或超过3ºC或超过3ºC的可能性(Stern,2007年)。降水模式的改变,世界冰块和雪沉积的减少,海平面上升以及极端天气事件的强度和频率的变化是其他预期的后果(IPCC,2007年)。气候变化将显着影响经济活动,人口和生态系统,并将在确定本世纪经济发展的特征中起着重要作用。
1 劳伦斯利弗莫尔国家实验室,美国加利福尼亚州利弗莫尔 2 美国国家航空航天局戈达德太空飞行中心,美国马里兰州格林贝尔特 3 马里兰大学环境科学与工程中心,美国马里兰州学院公园市 4 加州大学戴维斯分校土地、空气与水资源系,美国加利福尼亚州戴维斯市 5 美国国家海洋和大气管理局太平洋海洋环境实验室,美国华盛顿州西雅图市 6 莫纳什大学地球大气与环境学院,澳大利亚维多利亚州克莱顿市 7 LOCEAN-IPSL、CNRS-IRD-MNHN-索邦大学,法国巴黎 8 雷丁大学国家大气科学 - 气候中心,英国雷丁市 9 劳伦斯伯克利国家实验室,美国加利福尼亚州伯克利市 10 康奈尔大学地球与大气科学系,美国纽约州伊萨卡市 11 国家大气研究中心,美国科罗拉多州博尔德市 12 首尔国立大学地球与环境科学学院,韩国首尔市韩国 13 太平洋西北国家实验室,美国华盛顿州里奇兰 14 美国国家海洋和大气管理局地球物理流体动力学实验室,美国新泽西州普林斯顿 ⋆ 已退休