[ 1] 疾病控制与预防中心。(2020 年 12 月 7 日)。3D 打印工作安全。疾病预防控制中心。[2] Rooney, M. K., Rosenberg, D. M., Braunstein, S., Cunha, A., Damato, A. L., Ehler, E., Pawlicki, T., Robar, J., Tatebe, K., & Golden, D. W. (2020)。放射肿瘤学中的三维打印:文献系统综述。应用临床医学物理学杂志,21(8),15–26 [3] 太空 3D 打印。Aniwaa。(2021 年 8 月 5 日) [4] 原装 Prusa i3 MK3S+ 3D 打印机图片。(n.d.)。Prusa 3D。检索日期:2023 年 8 月 1 日 [5] 艺术家对地球磁层的演绎。(2007)。欧洲航天局。检索日期:2023 年 8 月 1 日 [6] Sherwin Emiliano。(2021 年 6 月 20 日)。[2021] 3D 打印机灯丝多少钱?MonoFilament DIRECT [7] P., M. (2022 年 8 月 8 日)。Pla 与 PETG:您应该选择哪种材料?3Dnatives [8] 文件:polylactid sceletal.svg。Wikimedia Commons。(n.d.-b) [9] 文件:Polyethyleneterephthalate.svg。Wikimedia Commons。(n.d.-a) [10] Junaedi, H., Albahkali, E., Baig, M., Dawood, A., & Almajid, A.(2020)。短碳纤维增强聚丙烯复合材料的延性至脆性转变。聚合物技术进展,2020 年,1-10 [11] https://www.worldoftest.com/electro-mechanical-dual-column-universal-testing-machine-qm-100200300500。(n.d.)。Qualitest。2023 年 8 月 3 日检索 [12] Wady, Paul, et al.“电离辐射对 3D 打印塑料的机械和结构性能的影响。” Additive Manufacturing,vol.31,2020,第 100907 页
摘要:鉴于 NASA 的 Artemis 计划即将在低地球轨道 (LEO) 以外执行一系列任务,并可能在月球和火星上建立基地,需要研究深空环境对生物的影响并制定保护措施。尽管自 20 世纪 60 年代以来,许多生物实验都在太空中进行,但大多数实验都是在低地球轨道进行的,而且只持续了很短的时间。这些低地球轨道任务研究了各种模型生物中的许多生物现象,并利用了广泛的技术。然而,鉴于深空环境的限制,未来的深空生物任务将仅限于使用微型技术的微生物。像立方体卫星这样的小型卫星能够使用新型仪器和生物传感器查询相关的太空环境。立方体卫星还为更复杂、更大规模的任务提供了一种低成本的替代方案,并且需要的机组人员支持最少(如果有的话)。已经有几颗立方体卫星部署在低地球轨道,但下一代生物立方体卫星将走得更远。 BioSentinel 将成为美国宇航局 50 年来第一个星际立方体卫星,也是第一个发射到地球磁层以外的生物研究卫星。BioSentinel 是一个自主的自由飞行平台,能够支持生物学并研究辐射对星际深空模型生物的影响。自由飞行器内包含的 BioSensor 有效载荷也是一种适应性强的仪器,可以对不同的微生物和多种空间环境(包括国际空间站、月球门户和月球表面)进行生物相关测量。像 BioSentinel 这样的纳米卫星可用于研究重力减小和空间辐射的影响,并可以容纳不同的生物或生物传感器来回答特定的科学问题。利用这些生物传感器将使我们能够更好地了解太空环境对生物的影响,以便人类可以安全返回深空并比以往走得更远。
David T. Young Young 博士的主要科学兴趣和贡献集中在研究和了解太阳系等离子体的化学成分以及成分对行星磁层动力学的影响。 为了追求这些兴趣,Young 博士领导或参与了几种广泛用于研究空间等离子体的尖端光谱仪的设计和开发。 基于他的仪器进行的实验有助于更好地了解陆地、行星和彗星磁层。 20 世纪 70 年代,Young 博士表明地球磁层的成分与太阳周期的紫外线辐射密切相关。 20 世纪 80 年代,他的工作集中于研究赤道磁层中发现的自生离子回旋波对重离子(He + 和 O + )的加速。 20 世纪 90 年代,他的工作主要集中于开发他正在开发的仪器的测量技术。到了 21 世纪初和 21 世纪 10 年代,杨博士将注意力转向了土星磁层的成分相关复杂性。他发现冰卫星释放的“水离子”主导着土星的磁层。他还致力于了解土卫六复杂的大气层和电离层,它们主要由带正电和负电的重碳分子组成。正是这些分子形成了覆盖土卫六表面的气溶胶颗粒。杨博士的实验室研究推动了尖端离子质谱技术的发展,开辟了新的实验可能性。他是第一个将质谱仪的能量范围和灵敏度提高了几个数量级的人,例如极地任务中的热离子动力学实验。他的工作导致了能量谱仪的小型化和性能的提高,例如罗塞塔号任务中的离子电子传感器,以及质谱仪,例如深空一号上的行星探索等离子体实验。 2002 年,他发明并领导了用于欧罗巴快船任务的超高分辨率 MASPEX 质谱仪(性能超越大多数实验室仪器)的早期开发。1988 年,杨博士构思了卡西尼等离子体光谱仪 (CAPS),这是一套集成的三台仪器套件,用于卡西尼号土星任务。由于他在伯尔尼大学期间在欧洲拥有长达十年的经验,他能够组建和管理一个团队,该团队最终包括来自美国和五个欧洲国家的 170 名科学家和工程师。1990 年,NASA 选择 CAPS 并由杨博士担任首席研究员,部分原因是欧洲团队的贡献为 NASA 在整个任务期间节省了 1500 万美元(以 2022 年的美元计算)。2019 年,卡西尼项目管理部门告知他,CAPS 的数据为 500 多篇出版物和 26 篇博士论文做出了贡献。在他的职业生涯中,杨博士Young 为实验空间科学界做出了贡献,他在四所机构设计和建造了高精度校准系统:莱斯大学、伯尔尼大学、洛斯阿拉莫斯大学和西南研究院的两所机构。这些系统已用于各种项目,包括阿波罗月球表面实验包、欧空局的罗塞塔号 67P/Churyumov-Gerasimenko 任务和卡西尼号。除了实验空间科学工作外,Young 博士的兴趣还包括教育下一代。为此,他教授了磁层物理和伽马射线光谱学课程(伯尔尼大学),以及空间仪器和航天器设计课程(伯尔尼大学)