基因组环境协会(GEA)是一种通过与环境参数结合遗传变异来识别适应位点的方法,从而提供了提高作物弹性的潜力。但是,其在Genebank配件上的应用受到丢失的地理来源数据的限制。为了解决这一限制,我们探索了神经网络来预测大麦加入的地理起源,并将估算的环境数据整合到GEA中。神经网络在交叉验证方面表现出很高的精度,但偶尔会产生可行的预测,因为模型仅被视为地理位置。例如,一些预测的起源位于不可理的区域内,例如地中海。使用大麦开花时间基因作为基准,GEA整合了估算的环境数据(n = 11,032),与常规GEA(n = 1,626)相比,在开花时间基因附近的基因组区域进行了部分一致但互补的检测(n = 1,626)(n = 1,626),从而突出了GEA与估计的GEA的潜在的互补的GEA,并在互补的GEA中突出了。同样,与我们最初的假设相反,可以通过增加样本量来预期GEA性能会有显着改善,我们的模拟产生了意外的见解。我们的研究表明,通过预测丢失的地理数据,GEA方法的敏感性对相当大的样本量的敏感性有潜在的局限性。总体而言,我们的研究通过与GEA进行深入的学习来提供有关利用不完整的地理起源数据的见解。我们的发现表明,需要进一步开发GEA方法来优化估算的环境数据的使用,例如结合区域GEA模式,而不是仅仅关注大型景观跨等位基因频率和环境梯度之间的全球关联。
在过去的二十年中,新型新兴变色技术已经描述了大约80种新的木兰物种。因此,该地区现在几乎拥有世界上已知的木兰多样性的一半。其中许多可能不是隔离分类单元,而是以前广泛的,广泛的物种的分开人群或人群。可能是Magnolia dealbata物种复合物的情况(属于木兰教派。macrophylla),分布在墨西哥东部的整个马德雷东方山脉。该物种复合物仅根据形态标准将六个形成式分配。但是,最近的微卫星标记表明这些标记可能是一个实体。考虑地理数据和人口的隔离,我们假设不同的形态物种可以形成两个实体,这些实体对应于东方山脉的北部和中心。通过形态学观察,质体比较和质体的叶绿体比较和系统发育分析来检验这一假设。从质体和被子植物DNA塑料条形码的系统发育结果反驳了多种假设,并表明这种复合物的六种形态种子居住在塞拉·马德雷(Sierra Madre)的东方构成单一实体。还提供了证据表明,用于划定复杂形态的形态学特征,主要是心皮的数量以及花瓣中斑点的缺勤 - 存在和颜色,实际上是表型变化,没有分类学意义。因此,在M. dealbata的下,这里是同义词。然而,基于木兰特异性质体DNA条形码的结果,可能保留后者作为多种大叶状球杆菌。此外,本研究提出了M. Dealbata的更新保护状态,强调了迫切需要有效的保护措施。此处介绍的分类学澄清对于适当地针对此类努力至关重要,尤其是面对诸如不加区分区分收集和易受环境干扰的脆弱性的威胁。
缩略词列表 APA 海上处理器协会 AWEA 美国风能协会 BOEM 海洋能源管理局 BNOW 海上风电商业网络 CADR 美国内政部协作行动和争议解决办公室 DLCD 俄勒冈州土地保护和开发部 DOE 美国能源部 DOI 美国内政部 FACT 蒂拉穆克渔民咨询委员会 FERC 联邦能源管理委员会 FGDC 联邦地理数据委员会 FINE 自然能源渔民 FISHCRED 渔民住房信息服务机密发布和基本分发 GLD 地理位置描述 KW 卡恩斯和韦斯特 MAFAC NOAA 海洋渔业咨询委员会 NASCA 北美海底电缆协会 NOAA 国家海洋和大气管理局 NREL 国家可再生能源实验室 NSAT 迪波湾近岸行动小组 OAH 委员会 俄勒冈州海洋酸化和缺氧协调委员会 OCEAN 俄勒冈州沿海能源联盟网络 OCMP 俄勒冈州沿海管理计划 OCS 外大陆架OSCRTN 俄勒冈州南海岸区域旅游网络 OCZMA 俄勒冈州海岸带管理协会 OSU 俄勒冈州立大学 PCFFA 太平洋海岸渔民协会联合会 PFMC 太平洋渔业管理委员会 PMEC 太平洋海洋能源中心 PNNL 太平洋西北国家实验室 POET 太平洋能源信托 PROUA 太平洋地区海洋利用地图集 PSPA 太平洋海鲜加工协会 PUD 公用事业区 RODA 负责任近海开发联盟 SOORC 俄勒冈南部海洋资源联盟 TDAT 美国住房和城市发展部的部落名录评估工具 TSP 领海计划 WCODP 西海岸海洋数据门户 WET-NZ 新西兰波浪能技术
缺乏全面的块状硫化物潜力图是阻碍 Escambray 地形中块状硫化物勘探和采矿投资和开发的主要因素。为了解决这个问题,新技术和方法被应用于完整的地理勘探数据集,以预测研究区域的潜力。矿床识别标准是基于研究区域和其他地区块状硫化物矿床特征从地理数据集中提取空间证据的基础。使用 Crósta 技术、软件脱叶剂技术和矿物成像技术来检测 Escambray 地形中的褐铁矿和粘土蚀变带。使用面积关联系数对这些技术的结果进行比较,表明矿物成像技术是检测与植被茂盛的地形中的块状硫化物矿床相关的粘土蚀变带的最佳方法。应用河流沉积物样品的主成分分析绘制地球化学异常区。研究了磁场分析信号和第一垂直梯度,以绘制现有地质图中缺少的结构和岩性特征。航空磁数据被证明分别可用于检测镁铁质/超镁铁质和断层/线性构造。为了量化地质特征与块状硫化物矿床之间的空间关联,使用了证据权重法。它产生了具有统计意义的结果,并表明几个地质特征(例如地球化学证据、与断层/裂缝的接近度、与超镁铁质/镁铁质岩的接近度、热液蚀变带和围岩)在空间上与块状硫化物矿床相关。证据权重建模也被证明对该地区进行预测建模是有效的。由此产生的预测图表明,埃斯坎布雷地形约 28% 具有形成块状硫化物矿床的潜力。预测图的预测率至少为 71%。预测图可用于指导该地区的进一步勘探工作。
缺乏全面的块状硫化物潜力图是阻碍 Escambray 地形中块状硫化物勘探和采矿投资和开发的主要因素。为了解决这个问题,新技术和方法被应用于完整的地理勘探数据集,以预测研究区域的潜力。矿床识别标准是基于研究区域和其他地区块状硫化物矿床特征从地理数据集中提取空间证据的基础。使用 Crósta 技术、软件脱叶剂技术和矿物成像技术来检测 Escambray 地形中的褐铁矿和粘土蚀变带。使用面积关联系数对这些技术的结果进行比较,表明矿物成像技术是检测与植被茂盛的地形中的块状硫化物矿床相关的粘土蚀变带的最佳方法。应用河流沉积物样品的主成分分析绘制地球化学异常区。研究了磁场分析信号和第一垂直梯度,以绘制现有地质图中缺少的结构和岩性特征。航空磁数据被证明分别可用于检测镁铁质/超镁铁质和断层/线性构造。为了量化地质特征与块状硫化物矿床之间的空间关联,使用了证据权重法。它产生了具有统计意义的结果,并表明几个地质特征(例如地球化学证据、与断层/裂缝的接近度、与超镁铁质/镁铁质岩的接近度、热液蚀变带和围岩)在空间上与块状硫化物矿床相关。证据权重建模也被证明对该地区进行预测建模是有效的。由此产生的预测图表明,埃斯坎布雷地形约 28% 具有形成块状硫化物矿床的潜力。预测图的预测率至少为 71%。预测图可用于指导该地区的进一步勘探工作。
简介和关于广泛地理数据聚合的注意事项 俄勒冈州东部劳动力区由八个县组成(贝克县、格兰特县、哈尼县、马卢尔县、莫罗县、乌马蒂拉县、尤宁县和瓦洛厄县)。该地区约占该州总面积的 40%,但仅占该州总人口的 4.5%。该地区各县的行业、资源、人口统计和季节性各不相同。例如,瓦洛厄县的几个行业高度依赖旅游业,而莫罗县的就业支柱是制造业,格兰特县则依赖政府就业作为经济基石。由于许多人口中心在地理上孤立,与其他人口中心的经济凝聚力极小,因此了解整个地区的经济健康状况很困难。数据聚合通常会掩盖底层细节,而这些细节对于了解广阔地理区域的健康和功能至关重要。例如,俄勒冈州东部的专业和商业服务业在 2011 年至 2019 年间急剧下滑,减少了 740 个工作岗位,降幅为 19%。实际上,在此期间,Umatilla 县的行业工作岗位大幅减少 1,090 个(-47%),而六个县的行业工作岗位有所增长,Malheur 的行业工作岗位仅减少了 40 个。但是,由于 Umatilla 在该地区的就业份额以及该县的就业岗位流失规模,汇总起来看起来好像该地区的每个县的行业都急剧下滑,但事实并非如此。出于这些原因,对整个劳动力区域的分析无法提供对各个县的经济理解,就像对整个美国的分析无法提供对各个州的经济理解一样。但是,以下分析仍然试图解决整个地区的经济问题,同时也提请大家注意县级细节,这可能有助于减少误解。由于数据汇总过于笼统,而基于汇总的区域报告通常缺乏对底层细节的充分了解,因此像这样一份广泛的区域报告不仅可能提供对经济的不完整理解,而且实际上可能造成对经济的错误理解。因此,建议对八个县中的每一个县进行彻底的经济分析,但这不在本报告的讨论范围内。
MSC(COMPSC)2024-25提供的课程列表(以下列表未完成)Comp7103。数据挖掘(6个学分)数据挖掘是从大量数据中自动发现统计有趣且可能有用的模式。该课程的目标是研究当今用于数据挖掘和在线分析处理的主要方法。主题包括数据挖掘体系结构;数据预处理;采矿协会规则;分类;聚类;在线分析处理(OLAP);数据挖掘系统和语言;高级数据挖掘(Web,空间和时间数据)。comp7104。高级数据库系统(6个学分)该课程将研究数据库系统中的一些高级主题和技术,重点关注数据库系统设计和算法的各个方面,以及用于结构化数据的大数据处理。传统主题包括查询优化,物理数据库设计,事务管理,崩溃恢复,并行数据库。该课程还将调查选定领域的一些最新发展,例如NOSQL数据库和基于SQL的关系(结构化)数据的大数据管理系统。comp7106。大数据管理(6个学分)该课程将研究大数据中的一些高级主题和技术。它还将调查大数据管理和可扩展数据科学的特定领域的最新发展和进展。主题包括但不限于:大数据库管理技术,空间数据管理和空间网络,数据质量和不确定数据库,TOP-K查询,图形和文本数据库以及数据分析。comp7107。comp7108。复杂数据类型的管理(6个学分)课程研究不是简单标量的数据类型的管理和分析。这种复杂的数据类型包括空间数据,多维数据,时间序列数据,时间和时空数据,稀疏的多维矢量,设置值数据,字符串和序列,同质和异构图形,知识基础图,知识基础图,地理文字和地理 - 地理和地理数据。对于每种数据类型,我们将学习流行的查询和分析任务,以及用于主内存和磁盘的存储和索引方法。网络数据分析(6个学分)在数据时代,许多现实世界应用程序最能以网络表示。这种观点至关重要,因为分析这些网络可以发现有价值的见解,提取有趣的信息并做出明智的决定。现代技术已大大提高了我们访问大量数据,简化和降低存储成本的能力。了解数据的重要性对于应对各种挑战,例如交通拥堵,金融网络欺诈检测以及在社交网络中的错误信息的传播,仅举几例。因此,开发可以解决这些挑战的高级工具的必要性越来越多,并且进一步了解数据的重要性比以往任何时候都更加必要。这些技术的示例可以是机器学习技术(例如,使用GNN对不同的问题进行建模)和自然语言处理(NLP)技术(文本预处理和情感分析)。
以及用于土地管理和网络地理数据使用的地理门户网站。她的科学训练始于水力学学科,她的学位和博士论文专注于河流形态动力学问题。然后,她将注意力转向监测河流环境,并解决了测量领土的问题以及对观测数据进行统计处理的数学方法。因此,研究重点是研究一种实验方法,该方法可以应用于河床的短期和长期监测,从而可以对有限面积的区域进行快速且廉价的调查。特别是,解决了实现 DTM(数字地形模型)的插值问题和插值参数的相对校准分析,通过使用 GIS 档案和分析工具根据测量活动本身分析的信息调整调查。因此,研究活动转向使用 GNSS 技术进行调查,该技术特别适合在紧急情况下进行环境监测,以支持永久站。特别是,设计了一个永久性 GNSS 站,用于持续的地球动力学监测,特别关注与安装天线的岩石纪念碑有关的技术和科学方面。同时,还开展了一项研究,以建立遍布利古里亚的永久卫星定位站网络。为此,计划了两次实时 GPS (RTK) 测量活动,参考伦巴第和皮埃蒙特的区域网络,以评估 RTK 测量对被测点位置的影响,参考网络本身的空间布局。此外,利用 GIS 和 DBMS 工具在空间分布数据管理和分析方面的潜力,解决了一些土地管理方面的问题,实施了适当的 GIS 程序,用于研究不透水环境中的领土可达性,制作河流洪水和海啸风险倾向图,评估降雨引发的山体滑坡的敏感性,评估真实的卫星可见性,即自动确定从数字表面模型 (DSM) 获得的障碍物,作为规划 GNSS 调查(包括静态和移动车辆)的支持工具,用于分析物流区域的防撞风险,评估 GNSS 对预测强烈气象事件的贡献,以及用于潜在近海养鱼场的 DSS 系统。目前的研究方向是:对大面积复杂地形区域的强降雨进行定位,有助于预测预警状态;建立综合模型,用于低成本监测降雨引发的山体滑坡;利用卫星技术对平均海平面研究做出贡献;在物流港区对移动车辆进行精确、低成本的定位,并结合实时防撞算法;在紧急情况下使用无人机进行摄影测量,并对移动车辆进行激光扫描,从而实现 3D 测量。
WORLDDEM – 新型全球基础层 G. Riegler、S. D. Hennig、M. Weber 空中客车防务与航天 – 地理情报,88039 Friedrichshafen,德国 - (gertrud.riegler、simon.hennig、marco.weber)@astrium.eads.net 关键词:WorldDEM、TanDEM-X 任务、高质量全球数字高程模型 摘要:空中客车防务与航天的 WorldDEM™ 提供具有空前质量、准确性和覆盖范围的全球数字高程模型。该产品在 12m x 12m 栅格中的垂直精度为 2m(相对),优于 6m(绝对)。其精度将超过任何现有的全球卫星高程模型。WorldDEM 是一项改变游戏规则的颠覆性技术,将定义全球高程模型的新标准。德国雷达卫星 TerraSAR-X 和 TanDEM-X 在太空中形成高精度雷达干涉仪,并为 WorldDEM 获取数据基础。这项任务与德国航空航天中心 (DLR) 联合执行。空中客车 DS 完善了数字表面模型(例如编辑采集、处理工件和水面)或生成数字地形模型。提供三个产品级别:WorldDEMcore(处理输出,不应用任何编辑)、WorldDEM™(保证无空隙地形描述和水文一致性)和 WorldDEM DTM(代表裸地高程)。精确的高程数据是任何精确地理空间产品的初始基础,特别是在基于它进行多源图像和数据集成时。融合数据可提高可靠性、增强置信度并减少歧义性。本文将介绍产品开发活动的现状,包括生成这些活动的方法和工具,如地形和水体编辑以及 DTM 生成。此外,还将介绍对 WorldDEM 产品的验证和确认研究。1.简介 数字高程模型 (DEM) 是许多商业和科学活动的关键,例如用于分析和预测环境和地球物理过程或事件,以进行危机干预规划,如洪水和风险测绘,用于水文、林业、多源地理数据正射校正和测绘、基础设施规划和导航等应用。例如,在石油和天然气业务中,高程信息对于进行石油和天然气田的可行性研究、勘探、开发和管理至关重要。高程模型的质量和可靠性至关重要。对高程信息的可用性、覆盖范围、准确性和同质性的要求日益提高。如今,市场上有许多来自各种机载和星载系统的 DEM 产品。大面积高度信息,尤其是全球 DEM,通常是来自各种来源的数据的拼凑,其中包含许多不同精度、分辨率、时间差、格式和投影的不同数据。结果很难统一,地球上每个点的质量也都不一样(Gantert 等人2011 年)。从 TanDEM-X 任务期间获取的 TanDEM-X DEM 衍生的 WorldDEM 是第一个来自同一来源的全球极点到极点数字高程模型。TanDEM-X 任务(TerraSAR-X 数字高程测量附加组件)是在德国航空航天中心 (DLR) 和空中客车防务与航天公司之间的公私合作伙伴关系 (PPP) 下实现的。空中客车 DS 拥有该数据的独家商业营销权,并负责根据全球商业用户的需求调整和完善高程模型 (Riegler 2013)。