预测地表能量收支需要精确的地表发射率 (LSE) 和地表温度 (LST) 信息。LST 是基本气候变量之一,也是局部和全球尺度地表过程物理中的重要参数,而 LSE 是物质成分的指标。尽管有大量关于使用遥感数据计算 LST 和 LSE 的方法和算法的出版物,但准确预测这些变量仍然是一项具有挑战性的任务。在现有的计算 LSE 和 LST 的方法中,特别关注的是归一化差异植被指数阈值法 (NDVI THM),尤其是对于农业和森林生态系统。要应用 NDVI THM,了解植被覆盖比例 (P V) 至关重要。本研究的目的是调查使用 NDVI THM 时 P V 预测精度对 LSE 和 LST 估计的影响。2015 年 8 月,在德国东南部巴伐利亚森林国家公园的混合温带森林中开展了一项实地活动,与 Landsat-8 立交桥同时进行。在 37 个地块的实地测量了 P V。使用了四种不同的植被指数以及人工神经网络方法来估计 P V 并计算 LSE 和 LST。结果表明,与传统植被指数(R 2 CV = 0.42,RMSE CV = 0.06)相比,使用人工神经网络(R 2 CV = 0.64,RMSE CV = 0.05)可以提高 P V 的预测精度。本研究结果还表明,估计的 P V 的精度变化影响了 LSE 的计算结果。此外,我们的研究结果表明,虽然 LST 取决于 LSE,但在预测 LST 时还应考虑其他参数,因为更准确的 LSE 结果并没有提高 LST 的预测精度。
引言UV/VIS分光光度法是水质分析中广泛使用的技术。除了检测到标准水参数(例如磷,铵和硝酸盐)[1]之外,它对检测植物色素(例如叶绿素,植物蛋白酶和黄友基因)特别有用。[2]在此,Analytik Jena在UV/VIS分光光度法中的长期经验结合了合适的分光光度计性能和软件以及正确的附件托盘,从单样本到自动化解决方案。在这方面,Specord 50 Plus分光光度计结合了操作中的简单性和出色的光谱性能以及自动化功能。在DIN 38409-60中采用了通过叶绿素监测的分光光度测量量化的块奖杯度(浮游植物或蓝细菌的生长):“叶绿素的光谱测定水中的浓度”作为德国标准方法的一部分
摘要:地表数字模型在林业中具有许多潜在应用。如今,光探测和测距 (LiDAR) 是收集形态数据的主要来源之一。通过激光扫描获得的点云用于通过插值对地表进行建模,这一过程受到各种误差的影响。使用 LiDAR 数据收集地表数据用于林业应用是一个具有挑战性的场景,因为森林植被的存在会阻碍激光脉冲到达地面的能力。因此,地面观测的密度将降低且不均匀(因为它受到冠层密度变化的影响)。此外,森林地区通常位于山区,在这种情况下,地表的插值更具挑战性。在本文中,我们对九种算法的插值精度进行了比较分析,这些算法用于在茂密的森林植被覆盖的山区地形中从机载激光扫描 (ALS) 数据生成数字地形模型。对于大多数算法,我们发现在总体精度方面性能相似,RMSE 值在 0.11 到 0.28 米之间(当模型分辨率设置为 0.5 米时)。其中五种算法(自然邻域、Delauney 三角剖分、多层 B 样条、薄板样条和基于 TIN 的薄板样条)对于超过 90% 的验证点具有小于 0.20 米的垂直误差。同时,对于大多数算法,主要垂直误差(超过 1 米)与不到 0.05% 的验证点相关。数字地形模型 (DTM) 分辨率、地面坡度和点云密度影响地面模型的质量,而对于冠层密度,我们发现与插值 DTM 的质量之间的联系不太显著。
结合SAR卫星数据和AI技术的灾害监测技术正在发展。这将使我们能够广泛且高度准确地了解地表运动和损坏情况,并有望为快速采取防灾减灾措施做出贡献。具体来说,正在开发各种应用,包括使用卫星 SAR 监测土壤运动、通过将时间序列 SAR 干涉测量与地质信息相结合来可视化边坡灾害风险、以及使用 SAR 图像和人工智能提取地面和建筑物的损坏情况。特别是将SAR不受天气和时间影响的特性与AI先进的分析能力相结合,可以实现以往难以实现的广域、及时的灾害监测。
摘要:地表数字模型在林业中具有许多潜在应用。如今,光检测和测距 (LiDAR) 是收集形态数据的主要来源之一。通过激光扫描获得的点云用于通过插值对地表进行建模,该过程受到各种误差的影响。使用 LiDAR 数据收集地表数据用于林业应用是一个具有挑战性的场景,因为森林植被的存在会阻碍激光脉冲到达地面的能力。因此,地面观测的密度将降低且不均匀(因为它受到冠层密度变化的影响)。此外,森林地区通常位于山区,在这种情况下,地表的插值更具挑战性。本文对九种算法的插值精度进行了比较分析,这些算法用于在茂密森林植被覆盖的山区地形中从机载激光扫描 (ALS) 数据生成数字地形模型。对于大多数算法,我们发现在一般精度方面具有相似的性能,RMSE 值在 0.11 到 0.28 m 之间(当模型分辨率设置为 0.5 m 时)。其中五种算法(自然邻域、Delauney 三角剖分、多级 B 样条、薄板样条和 TIN 薄板样条)对超过 90% 的验证点的垂直误差小于 0.20 m。同时,对于大多数算法,主要垂直误差(超过 1 m)与不到 0.05% 的验证点相关。数字地形模型 (DTM) 分辨率、地面坡度和点云密度影响地面模型的质量,而对于冠层密度,我们发现与插值 DTM 的质量之间的联系不太明显。
首席执行官马克·塞尔比表示:“今天的公告确保了 32,000 英亩地表权的使用权,这是公司完成许可并朝着 2025 年克劳福德建设决策迈出的又一个关键步骤。作为地表权协议的一部分,公司将把金斯米尔镇和马比镇的 47,750 英亩采矿权(这些地方没有已知的勘探目标)转让给地表权持有人。此次转让旨在为大片土地创造未来的确定性,促进可持续林业和野生动物栖息地保护的有效发展。我们为在释放克劳福德项目和蒂明斯镍业区的潜力方面取得的进展感到自豪,建设一个有利于环境并支持子孙后代的未来。”
摘要 摘要 准确预测隧道施工引起的地表沉降对于保证隧道工程安全施工和决策至关重要。本文建立了一种用于预测盾构隧道施工引起地层变形的物理信息神经网络(PINN)模型。该模型将隧道收敛变形与隧道开挖位置的关系纳入深度神经网络(DNN)框架中。考虑到多地层的地质特点,提出了一种多物理信息神经网络(MPINN)模型,在统一的框架下表示不同地层的物理信息。结果表明,MPINN模型可以高度再现有限差分法的计算结果,并能准确预测考虑复合地层的复杂地质信息的隧道施工引起的地表沉降。由于MPINN模型具有完整的物理机制,适用于隧道施工引起的地表沉降问题,可以预测不同地质和几何条件下的隧道施工引起的地表沉降。基于实测数据,提出的MPINN模型能够准确预测监测断面地表沉降曲线,为隧道施工过程中地表沉降预测预警提供参考。
摘要:地表数字模型在林业中具有许多潜在应用。如今,光探测和测距 (LiDAR) 是收集形态数据的主要来源之一。通过激光扫描获得的点云用于通过插值对地表进行建模,这一过程受到各种误差的影响。使用 LiDAR 数据收集地表数据用于林业应用是一个具有挑战性的场景,因为森林植被的存在会阻碍激光脉冲到达地面的能力。因此,地面观测的密度将降低且不均匀(因为它受到冠层密度变化的影响)。此外,森林地区通常位于山区,在这种情况下,地表的插值更具挑战性。在本文中,我们对九种算法的插值精度进行了比较分析,这些算法用于在茂密的森林植被覆盖的山区地形中从机载激光扫描 (ALS) 数据生成数字地形模型。对于大多数算法,我们发现在总体精度方面性能相似,RMSE 值在 0.11 到 0.28 米之间(当模型分辨率设置为 0.5 米时)。其中五种算法(自然邻域、Delauney 三角剖分、多层 B 样条、薄板样条和基于 TIN 的薄板样条)对于超过 90% 的验证点具有小于 0.20 米的垂直误差。同时,对于大多数算法,主要垂直误差(超过 1 米)与不到 0.05% 的验证点相关。数字地形模型 (DTM) 分辨率、地面坡度和点云密度影响地面模型的质量,而对于冠层密度,我们发现与插值 DTM 的质量之间的联系不太显著。
摘要:地表数字模型在林业中具有许多潜在应用。如今,光探测和测距 (LiDAR) 是收集形态数据的主要来源之一。通过激光扫描获得的点云用于通过插值对地表进行建模,这一过程受到各种误差的影响。使用 LiDAR 数据收集地表数据用于林业应用是一个具有挑战性的场景,因为森林植被的存在会阻碍激光脉冲到达地面的能力。因此,地面观测的密度将降低且不均匀(因为它受到冠层密度变化的影响)。此外,森林地区通常位于山区,在这种情况下,地表的插值更具挑战性。在本文中,我们对九种算法的插值精度进行了比较分析,这些算法用于在茂密的森林植被覆盖的山区地形中从机载激光扫描 (ALS) 数据生成数字地形模型。对于大多数算法,我们发现在总体精度方面性能相似,RMSE 值在 0.11 到 0.28 米之间(当模型分辨率设置为 0.5 米时)。其中五种算法(自然邻域、Delauney 三角剖分、多层 B 样条、薄板样条和基于 TIN 的薄板样条)对于超过 90% 的验证点具有小于 0.20 米的垂直误差。同时,对于大多数算法,主要垂直误差(超过 1 米)与不到 0.05% 的验证点相关。数字地形模型 (DTM) 分辨率、地面坡度和点云密度影响地面模型的质量,而对于冠层密度,我们发现与插值 DTM 的质量之间的联系不太显著。