DEMMIN – 使用建模和遥感数据演示生物量潜力评估的试验场 Erik Borg 博士 *) 、Holger Maass *) 、Edgar Zabel **) *) 德国航空航天中心 (DLR)、德国遥感数据中心 (DFD) **) 兴趣小组 Demmin Kalkhorstweg 53 D- 17235 Neustrelitz 与会议 2 相关 摘要:通过“全球环境和安全监测 (GMES)”倡议,欧盟 (EU) 和欧洲航天局 (ESA) 制定了一项雄心勃勃的计划,利用空间遥感技术以及其他数据源和监测系统为欧洲市场提供各种环境、经济和安全方面的创新服务。为了实现这一目标,必须实施自动化的实时和近实时基础设施,以便自动处理遥感数据。空间段和地面段的必要开发和实施已经在推进中。将开发用于获取增值产品的自动化处理链和处理器,特别是开发用于校准和验证遥感任务的测试站点。海报介绍了 DLR 测试站点 DEMMIN(持久环境多学科监测信息网络),它是校准和验证生物质和生物能源增值数据产品、区域规模生物质模型(如 BETHY/DLR)的先决条件,并展示了在实践中使用遥感数据和产品获取生物质潜力的可能性。考虑到这一背景,该演示文稿介绍了 DLR 的测试站点 DEMMIN,包括其特定的区域特征、现场测量仪器和现有数据库。测试站点 DEMMIN 是一个密集使用的农业区,位于德国东北部梅克伦堡-前波美拉尼亚州德明镇附近(距柏林以北约 180 公里)。自 1999 年以来,DLR 与 Demmin 利益集团 (IG Demmin) 一直保持着密切的合作。DEMMIN 的范围从北纬 54°2 ′ 54.29 ″、东经 12°52 ′ 17.98 ″ 到北纬 53°45 ′ 40.42 ″、东经 13°27 ′ 49.45 ″。IG Demmin 由 5 家农业有限责任公司组成,占地约 25,000 公顷农田。该地貌属于上一次更新世 (Pommersches stadium) 形成的北德低地。其特点是冰川河流沉积物和冰川湖沼沉积物以及反映在略微起伏的地貌中的冰碛。土壤基质以壤土和沙壤土为主,与纯沙斑或粘土区域交替出现。试验场的海拔高度约为 50 米,试验场东南部托伦塞河沿岸有一些坡度较大的山坡(12°)。年平均气温为 7.6 至 8.2°C。降水量约为 500 至 650 毫米。由于微地形,气候条件在局部范围内可能存在很大差异。该地区的田地面积很大,平均为 80 - 100 公顷。主要种植的作物是冬季作物,覆盖该地区近 60% 的田地。玉米、甜菜和土豆约占 13%。由于 DLR 与 IG Demmin 的合作,科学家们得到了农民的支持,并为他们的调查提供了重要信息。例如,数字准静态数据(如土壤图、地块图)或数字动态数据(如产量图和应用图)。除了数据库之外,DEMMIN 还实现了农业气象网络,它可以自动测量影响成像过程的所有农业气象参数,同时进行空间或机载遥感。
分析了智利中部安第斯山脉南部(32 – 34.5 S)上新世至近期大型(N 0.1 平方公里)岩崩的分布和年龄,以确定岩崩触发机制及其对区域景观演变的影响。大多数岩崩发生在西部主科迪勒拉山脉,并沿着主要地质构造聚集。变异分析显示岩崩、地质构造和浅层地震之间存在空间相关性。使用现有的 14 C 和 40 Ar/ 39 Ar 日期以及选定岩崩的新宇宙成因核素暴露年龄校准了相对年代序列。使用岩崩区域分布的经验关系估计了岩崩引起的沉积物产量。在整个第四纪,岩石滑坡将沉积物输送到溪流中,其速率相当于 0.10± 0.06 mm a − 1 的剥蚀速率,而使用短期(20 年)地震记录的估计值为 0.3 − 0.2 +0.6 mm a − 1 。沉积物转移的估计值和岩石滑坡的空间分布反映了一种地貌,其中构造和地质对剥蚀的控制比气候更为重要。© 2008 Elsevier B.V. 保留所有权利。
摘要 卫星图像与地形/表面地图相结合用于识别和描述科威特沙漠表面的变化,这些变化是由 1991 年海湾战争期间和之后的军事活动造成的。这些变化导致了地表沉积物和形态特征的改变,从而导致了环境恶化。地理信息系统 (GIS) 用于整合和分析来自卫星图像、地图和实地观测的多源和多尺度数据。GI 用于识别、描述和描述地形格局的变化、地表变化的性质和程度及其对环境的潜在影响。战后卫星图像与战前实地地图相关联,可以识别地表沉积物类型和地貌单元的变化,重点关注显示地表动力学变化的区域。根据地表沙土范围的变化 [战后沙土侵入] 和石油污染的影响(薄凝灰岩层的形成)对这些区域进行识别和分类。 GIS 分析显示,科威特 21.6% 的面积受到海湾战争的影响,其中 4.4% 是由于石油污染,17.2% 是由于重新动员的沙床。这些结果表明,需要重新分类科威特的地貌特征,以考虑这些与战争相关的表面变化。
在喀斯特含水层中,地下水充电的性质在地质时间内控制了spelease,它直接影响当前含水层中水的数量和质量。喀斯特ter虫中有两种基本的地下水补给类型:自动源性和同源性(Shuster and White,1971)。自体充电可以进一步分为分散和离散充电。同种异体和离散的充值模式是污染物运输到地下水的尤其脆弱的环境。同种异性充电到喀斯特含水层发生,在表面径流中耗尽大面积不溶性岩石或低渗透性土壤的土壤直接流向相邻的可溶性汽车底基岩(Palmer,2000年)。对喀斯特含水层充电沿着下沉或丢失的溪流通道通过多孔的河床沉积物或流床中的裂缝渗入,或者通过溪流渗透而失去溪流通道(White,1988)。在此设置中,喀斯特含水层显示出表面流的流动特性,对预提取的响应相对较快,并且在几个数量级上的复活放电变化。在由Allo-
地形建模,即地面量化的实践,是地球科学、数学、工程学和计算机科学的综合体。这门学科有各种名称,如地貌测量学(或简称为形态测量学)、地形分析和定量地貌学。它通过水文学、地质灾害测绘、地质构造学、海底和行星探索以及其他领域的大量应用不断发展。该领域名义上可以追溯到学术地理学的共同创始人亚历山大·冯·洪堡(1808 年,1817 年)和卡尔·里特(1826 年,1828 年),20 世纪后期,计算机操纵地形高度的空间阵列或数字高程模型 (DEM) 彻底改变了该领域,这些模型可以量化和描绘大面积的地面形态(Maune,2001 年)。形态测量程序通常由商业地理信息系统 (GIS) 以及专业软件实施(Harvey 和 Eash,1996 年;Köthe 等人,1996 年;ESRI,1997 年;Drzewiecki 等人,1999 年;Dikau 和 Saurer,1999 年;Djokic 和 Maidment,2000 年;Wilson 和 Gallant,2000 年;Breuer,2001 年;Guth,2001 年;Eastman,2002 年)。《地球物理杂志》的新地球表面版
地形建模是一种对地表进行量化的实践,是地球科学、数学、工程学和计算机科学的综合体。该学科有各种名称,如地貌测量学(或简称为形态测量学)、地形分析和定量地貌学。它通过水文学、地质灾害测绘、地质构造学、海底和行星探索以及其他领域的大量应用不断发展壮大。该领域名义上可以追溯到学术地理学的共同创始人亚历山大·冯·洪堡(1808 年,1817 年)和卡尔·里特(1826 年,1828 年),20 世纪后期,计算机操纵地形高度的空间阵列或数字高程模型 (DEM) 彻底改变了该领域,这些模型可以量化和描绘大面积的地表形态(Maune,2001 年)。形态测量程序通常由商业地理信息系统 (GIS) 以及专业软件实施(Harvey 和 Eash,1996 年;Köthe 等人,1996 年;ESRI,1997 年;Drzewiecki 等人,1999 年;Dikau 和 Saurer,1999 年;Djokic 和 Maidment,2000 年;Wilson 和 Gallant,2000 年;Breuer,2001 年;Guth,2001 年;Eastman,2002 年)。《地球物理杂志》的新地球表面版
地形建模是一种对地表进行量化的实践,是地球科学、数学、工程学和计算机科学的综合体。该学科有各种名称,如地貌测量学(或简称为形态测量学)、地形分析和定量地貌学。它通过水文学、地质灾害测绘、地质构造学、海底和行星探索以及其他领域的大量应用不断发展壮大。该领域名义上可以追溯到学术地理学的共同创始人亚历山大·冯·洪堡(1808 年,1817 年)和卡尔·里特(1826 年,1828 年),20 世纪后期,计算机操纵地形高度的空间阵列或数字高程模型 (DEM) 彻底改变了该领域,这些模型可以量化和描绘大面积的地表形态(Maune,2001 年)。形态测量程序通常由商业地理信息系统 (GIS) 以及专业软件实施(Harvey 和 Eash,1996 年;Köthe 等人,1996 年;ESRI,1997 年;Drzewiecki 等人,1999 年;Dikau 和 Saurer,1999 年;Djokic 和 Maidment,2000 年;Wilson 和 Gallant,2000 年;Breuer,2001 年;Guth,2001 年;Eastman,2002 年)。《地球物理杂志》的新地球表面版
地形建模是一种对地表进行量化的实践,是地球科学、数学、工程学和计算机科学的综合体。该学科有各种名称,如地貌测量学(或简称为形态测量学)、地形分析和定量地貌学。它通过水文学、地质灾害测绘、地质构造学、海底和行星探索以及其他领域的大量应用不断发展壮大。该领域名义上可以追溯到学术地理学的共同创始人亚历山大·冯·洪堡(1808 年,1817 年)和卡尔·里特(1826 年,1828 年),20 世纪后期,计算机操纵地形高度的空间阵列或数字高程模型 (DEM) 彻底改变了该领域,这些模型可以量化和描绘大面积的地表形态(Maune,2001 年)。形态测量程序通常由商业地理信息系统 (GIS) 以及专业软件实施(Harvey 和 Eash,1996 年;Köthe 等人,1996 年;ESRI,1997 年;Drzewiecki 等人,1999 年;Dikau 和 Saurer,1999 年;Djokic 和 Maidment,2000 年;Wilson 和 Gallant,2000 年;Breuer,2001 年;Guth,2001 年;Eastman,2002 年)。《地球物理杂志》的新地球表面版
地形建模是一种对地表进行量化的实践,是地球科学、数学、工程学和计算机科学的综合体。该学科有各种名称,如地貌测量学(或简称为形态测量学)、地形分析和定量地貌学。它通过水文学、地质灾害测绘、地质构造学、海底和行星探索以及其他领域的大量应用不断发展壮大。该领域名义上可以追溯到学术地理学的共同创始人亚历山大·冯·洪堡(1808 年,1817 年)和卡尔·里特(1826 年,1828 年),20 世纪后期,计算机操纵地形高度的空间阵列或数字高程模型 (DEM) 彻底改变了该领域,这些模型可以量化和描绘大面积的地表形态(Maune,2001 年)。形态测量程序通常由商业地理信息系统 (GIS) 以及专业软件实施(Harvey 和 Eash,1996 年;Köthe 等人,1996 年;ESRI,1997 年;Drzewiecki 等人,1999 年;Dikau 和 Saurer,1999 年;Djokic 和 Maidment,2000 年;Wilson 和 Gallant,2000 年;Breuer,2001 年;Guth,2001 年;Eastman,2002 年)。《地球物理杂志》的新地球表面版
摘要 本指南根据俄勒冈州湿地和河岸地区的水文地貌 (HGM) 特征(主要水源和景观环境)描述了一种分类系统。这代表了类似国家分类的区域细化。本指南为俄勒冈州 10 个地区的 14 个 HGM 子类中的每一个提供了叙述性描述(概况)。这些概况涉及子类的识别、全州分布和变异性、可能的功能以及对人类和自然干扰的脆弱性。本指南提供了 13 种自然功能的概况,这些功能可能因其为社会提供服务而具有价值。本指南记录了这些功能在太平洋西北部湿地/河岸系统中的出现,描述了它们的潜在价值和服务,并提出了可能预测功能和价值相对大小的变量和指标。还包括 (a) 有关藻类、维管植物、无脊椎动物、两栖动物和鸟类对湿地/河岸栖息地中人类相关干扰的敏感性的可用区域信息概况,(b) 太平洋西北部湿地/河岸系统常用分类系统概要,(c) 太平洋西北部湿地/河岸系统功能评估方法概要,(d) 俄勒冈湿地植物群落和 HGM 类别之间可能存在的关联列表,以及 (e) 使用俄勒冈湿地/河岸栖息地的鱼类和野生动物物种列表。现有文献、专家意见和数据库贯穿了整个指南。引用的文献主要来自一个包含 1600 多个条目的数据库,这些条目描述了在太平洋西北部进行的湿地、河岸和水生研究。
