太空技术已将概要视图添加到地貌学中使用的其他技术中。天气视图由航天器图像或将太空技术应用于久久的信息系统提供。地球航天器图像的示例是Landsat,Seasat和Sir(Shuttle Imaging Radar)系列。应用太空技术的示例包括将地形图转换为阴影浮雕图和数字相关方法的数字转换。从对其他行星的研究中,我们了解到,概要视图可以使行星的历史解密:大型特征是在小型的小型上识别和映射的;研究从一般到特定进行。在地球上,我们通常首先认识到较小的特征并研究特定过程,然后推断出朝着较大的特征和一般合成。随着地球太空图像的出现,也许是时候采用其他行星的方法来研究地质地质和地貌。以下示例说明了地球上的区域尺度研究的使用:在南极中的概要视图图像的应用,数字方法的使用以及多个数据集中的多个数据集的相关性,以及我们对陆地地质学的理解,这些益处是从其他行星分析中获得的。
建议年级 4 年级 -12 年级 学科领域 地球科学、空间科学、语言艺术 时间线 45 分钟 标准 • 4-ESS1-1. 从岩层模式和岩层化石中识别证据,以支持对地貌随时间变化的解释。 • 4-ESS2-2. 分析和解释地图数据以描述地球特征的模式。 • MS-ESS1-3. 分析和解释数据以确定太阳系中物体的比例属性。 背景 人类想要了解我们的自然环境。熟悉我们的世界很重要。随着时间的推移,地图绘制技术不断发展。我们有键、比例、符号、经纬度坐标来精确定位地球上的确切位置,以及颜色/线条来显示海拔。凭借我们目前对地图技术的了解和阅读地球地图的能力,我们现在能够将其与火星联系起来。从纯粹的观察开始,然后轨道器收集火星图像。现在我们甚至在火星上有了探测器和着陆器。这种侦察与技术相结合,使我们能够突破探索的极限。地图是其中的重要组成部分。它们让我们熟悉陌生的事物,准确地侦察出潜在的着陆点,并让我们能够“先知后知”。
激光扫描提供没有结构元素的点云。另一方面,高质量的数字地形模型在考虑地形结构元素方面表现出色。IPF 开发的结构线检测方法基于应用于数字地形模型的水流分析(Rieger,1992 年)。这种方法仅限于河流为主的地区,这些地区的地表由水流形成。利用这种算法可以提取显示水流最多的 3D 河流线。这种线信息可用于获得具有高地貌质量的数字地形模型(Gajski,2000 年)。这种方法在某些地区显示出合理的结果,但在平坦地区存在问题,因为无法很好地确定水流。第二种方法专注于断线的推导,特别是堤坝上边缘的断线。它在对象空间中对原始点及其 x、y 和 z 坐标进行操作。在迭代过程中,原始点被分类到相对于断线的“左”和“右”区域。这些区域由一对移动平面近似。此方法的详细信息和第一批结果在出版物(Kraus,Pfeifer,2001)中介绍。目前,我们正在对该方法进行改进和进一步开发。
摘要:极端的气象事件和人为影响的影响决定了微生物群落组成的重要变化。要知道这些变化的程度,有必要深入研究地球因子,以被视为基线。这项研究的目的是评估地形特征和土壤地球化学对三个被认为是地中海环境的地形分子生物标志物的静脉细菌属的空间分布的影响。鉴于静脉细菌在生态系统中发挥的重要作用,我们进行了rubrobacter,gaiella和Microlunatus属的空间分布模型,并在基于机器学习(ML)框架的框架中研究了真菌/细菌的比例。可变重要性提供了对地貌空间分布的控制因素的洞察力。预测的肌细菌属的空间分布通常遵循地形约束,主要是高度。rubrobacter与斜率方面和锂有关。 Microlunatus与地形湿度指数(TWI)和归一化差异指数(NDWI)以及真菌/细菌比例有关。 Gaiella与流道和金属有关。我们的结果提供了有关地中海地区肌细菌适应的新信息,并显示了使用ML框架进行OTUS分布的空间预测的潜力。
摘要—在合成孔径雷达 (SAR) 干涉测量中,两个不同传感器位置之间的相位差用于估计地形地貌。虽然可以通过这种方式找到三维 (3-D) 表面表示,但在固定距离和方位角位置的高度方向上不同散射体的分布仍然未知。与此相反,断层扫描技术在高度方向上实现了真正的几何分辨能力,并为许多应用和反演问题带来了新的可能性。即使是由重叠和缩短效应引起的 SAR 图像中的误解也可以通过断层扫描处理来解决。本文首次展示了极化机载 SAR 断层扫描的成功实验实现。我们提出了针对多基线成像几何的断层成像孔径合成概念,并讨论了由有限数量的飞行轨迹引起的限制。我们提出了一种减少与成像位置的不规则和欠采样空间分布相关的高度模糊性的方法。最后,我们解决了极化机载 SAR 层析成像的实验要求,并展示了使用德国航空航天中心的实验 SAR(E-SAR)在德国上法芬霍芬附近试验场的 L 波段获取的多基线数据集的实验结果。
摘要—在合成孔径雷达 (SAR) 干涉测量中,两个不同传感器位置之间的相位差用于估计地形地貌。虽然可以通过这种方式找到三维 (3-D) 表面表示,但在固定距离和方位角位置的高度方向上不同散射体的分布仍然未知。与此相反,断层扫描技术在高度方向上实现了真正的几何分辨能力,并为许多应用和反演问题带来了新的可能性。即使是由重叠和缩短效应引起的 SAR 图像中的误解也可以通过断层扫描处理来解决。本文首次展示了极化机载 SAR 断层扫描的成功实验实现。我们提出了针对多基线成像几何的断层成像孔径合成概念,并讨论了由有限数量的飞行轨迹引起的限制。我们提出了一种减少与成像位置的不规则和欠采样空间分布相关的高度模糊性的方法。最后,我们解决了极化机载 SAR 层析成像的实验要求,并展示了使用德国航空航天中心的实验 SAR(E-SAR)在德国上法芬霍芬附近试验场的 L 波段获取的多基线数据集的实验结果。
摘要:竖琴型copepod tigriopus brevicornis属于潮间带岩池的Meiofauna,并沿着欧洲海岸广泛分布。从爱尔兰海到西班牙海岸采样了16个地点。我们使用ITS1标记来分析种群之间的关系,因为它显示出较低的插孔内变化(平均成对差异:1.00±0.8)和高插室差异(平均成对差异:16.38±7.39)。在433个bp中,总共57 bp被认为是分析的61个个体中的信息核苷酸。对遗传关系的分析强调了自然种群分布的南北分裂,并显示了吉伦德河口周围的遗传断裂点,这可能是由于该河口两个不同边的沿海地区的地貌特征差异。分离了各种种群,ITS1序列表明这些人群中存在特定的遗传特征。沿着大型岩石海岸线采样的北部人群具有一个种群的结构,并在地理位置接近人群之间以及地理上远处的人口之间进行了遗传交流。在大沙滩上的小岩石游泳池中采样了南部人口,由于该地区的地貌显示了孤立的种群。
Zaruba 和 Mencl(1954 年,捷克语)以及 Morgenstern 和 Cruden(1977 年)讨论了“模型”在工程地质学中的应用,尽管第一次创建地面横截面来说明工程项目的地质条件可以说是第一个工程地质模型。一个例子是 William Smith 的工作以及 18 世纪英国运河建设相关的地质图和剖面图的开发。Fookes(1997 年)将工程地质学中的模型概念带给了更广泛的受众,但将这些模型简称为地质模型。Fookes 等人(2000 年)改进了这种方法,包括“总地质历史”的概念,即地面的工程特性来自该地区的整个地质和地貌历史。Knill(2003 年)认为“地质模型”本身不足以用于工程目的,因为它不能充分定义自然地面内的工程条件或帮助实现设计。他建议考虑地质模型、地面模型和岩土模型更为有用,模型类型与项目的进展有关。Bock 等人(2004 年)对工程地质学、土力学和岩石力学学科之间的关系、相关国际学术团体的兴趣领域以及地质模型的性质提出了看法
山体滑坡遍布各大洲,在景观演变中发挥着重要作用。在世界许多地区,山体滑坡也是一种严重灾害。尽管山体滑坡十分重要,但我们估计,山体滑坡地图仅覆盖了不到 1% 的大陆斜坡,而且缺乏有关山体滑坡类型、数量和分布的系统信息。绘制山体滑坡地图对于记录某个区域山体滑坡现象的程度,调查斜坡失效的分布、类型、模式、复发率和统计数据,确定山体滑坡的敏感性、危害、脆弱性和风险,以及研究以滑坡过程为主的景观演变都非常重要。绘制山体滑坡地图的传统方法主要依靠对立体航空摄影的目视解译,并辅以实地调查。这些方法既费时又耗费资源。基于卫星、机载和地面遥感技术的新兴技术有望促进滑坡地图的制作,减少编制和系统更新所需的时间和资源。在本文中,我们首先概述了滑坡制图的原则,并回顾了编制滑坡地图的传统方法,包括地貌、事件、季节和多时间清单。接下来,我们将研究滑坡制图的最新和新技术,考虑(i)利用
摘要—在合成孔径雷达 (SAR) 干涉测量中,两个不同传感器位置之间的相位差用于估计地形地貌。虽然可以通过这种方式找到三维 (3-D) 表面表示,但在固定距离和方位角位置的高度方向上不同散射体的分布仍然未知。与此相反,断层扫描技术在高度方向上实现了真正的几何分辨能力,并为许多应用和反演问题带来了新的可能性。即使是由重叠和缩短效应引起的 SAR 图像中的误解也可以通过断层扫描处理来解决。本文首次展示了极化机载 SAR 断层扫描的成功实验实现。我们提出了针对多基线成像几何的断层成像孔径合成概念,并讨论了由有限数量的飞行轨迹引起的限制。我们提出了一种减少与成像位置的不规则和欠采样空间分布相关的高度模糊性的方法。最后,我们解决了极化机载 SAR 层析成像的实验要求,并展示了使用德国航空航天中心的实验 SAR(E-SAR)在德国上法芬霍芬附近试验场的 L 波段获取的多基线数据集的实验结果。