• 旨在开发空间系统利用和空间应用的 TT:这些产品将找到利用空间应用的最终用途服务组织,例如 MoES、DoT、IMD、战略部门等。示例包括 S 波段 DRS、卫星电信/电视/气象地面系统、遥感利用、NavIC 应用等。
简介 该调查由日本贸易振兴机构 (JETRO) 委托,根据 HISe 独立获取和分析的信息进行编制,旨在总结美国航天工业和小型卫星市场的趋势。报告分为“1.美国航天市场的现状和未来”、“2.小型卫星领域的产业和企业动向(服务、制造、发射)”、“3.在小型卫星制造、发射、运营、地面系统等领域活跃的美国企业事例”、“4.日本企业与美国企业开展业务的环境、对应的模式、条件和方法”、“5.美国对航天相关业务的出口管制法规和程序”等5个部分。 第1部分“美国航天市场的现状和未来”探讨了新兴航天公司的崛起和趋势以及它们给整个航天产业带来的变化,涵盖了美国政府航天预算及其使用趋势、美国政府的航天政策、美国军方的行动以及各个领域的民间航天产业趋势等方面。 在第二部分“小型卫星领域的产业和商业趋势(服务、制造、发射)”中,我们将研究小型卫星制造和发射服务、使用小型卫星的商业服务以及美国政府项目的趋势。 第 3 部分“活跃于小型卫星制造、发射、运营和地面系统领域的美国公司示例”列出了在美国运营的航天公司示例,并将其分为卫星制造、运营、地面系统和发射等领域。 第四部分“日本企业与美国企业开展业务的环境、相应的模式、条件和方法”将探讨第三部分中介绍的日本企业与美国企业开展业务的环境、相应的模式、条件和方法。 最后,在第五部分“美国太空相关业务出口管制法规和程序”中,我们将深入了解美国太空相关设备和技术出口法规和程序的实际方面,然后概述它们如何应用并影响日本向美国出口太空相关设备和技术。 我们希望本报告能够为日本航天产业的从业者提供信息,以了解美国市场的趋势并考虑未来的商业战略。
这些系统已经很完善,是卫星电视广播和固定连接服务的基础。GEO 卫星可以与低成本接收器(如抛物面天线)配合使用,这些接收器指向天空中的固定位置,无需依赖任何昂贵的跟踪设备。但是,缺点是,当通信距离超过 35,000 公里时,飞行时间会变得很长,并且卫星的光束会分散在很大的表面区域上。这意味着 GEO 卫星不适合双向延迟敏感服务,并且它们无法提供与地面系统一样多的单位面积容量。
当涉及极端天气事件时,例如飓风,龙卷风,野火,暴雨和洪水,早期和准确的检测对于确保人们的安全和不受伤害的方式至关重要。已有60多年的历史了,L3Harris一直处于推进天气能力的最前沿(包括空间的响应和成像仪器和地面系统技术),以提高预测准确性,衡量气候变化并增加挽救生命的警告时间。
本书有助于弥合当前围绕太空技术及其探索方法的知识差距,并突出了人们急需的意识以及对太空法和可持续措施增加的注意力的关注。公共和商业实体对基于太空解决方案的不断增长正在射频频谱和轨道插槽中产生拥堵。卫星技术的不可避免的商业化肯定会导致低地球轨道中私人拥有和管理的卫星航天器的扩散。空军和国防部中的网络脆弱性经常忽略卫星地面系统。太空地面系统网络安全攻击和调查包括涉及卫星控制,通信终端黑客入侵和GPS欺骗的攻击。空间系统需要一种连续的网络安全评估技术来识别,评估,减少和解决复杂的网络威胁。基于风险的依从性,定期的网络安全风险评估以及在设计时重新关注消除系统缺陷的重点是太空地面和控制系统所必需的。由于缺乏刚性调节框架,卫星在空间碎片的生产中起着重要作用,这是令人担忧的增加。这种碎片人为地制造了巨大的贡献,这对地球轨道环境的破坏做出了巨大贡献。没有一个框架可以适当地控制当代问题,例如卫星数据的安全性和轨道上的碎屑。国防部(DOD)现在负责监视太空中的所有对象;但是,它不需要卫星操作员采取预防措施,以防止潜在的碰撞。
这个多轨道卫星群将结合低地球轨道 (LEO)、地球静止轨道 (GEO) 和中地球轨道 (MEO) 卫星的优势。它将为欧盟及其成员国提供安全通信服务,并为欧洲公民、私营公司和政府机构提供宽带连接。欧盟太空计划的这一新组成部分将通过弹性和超安全的空间和地面系统,利用该卫星群的南北轨道,结束欧洲以及整个非洲的盲区。它可能包括
Epirus 的下一代 Leonidas 系统系列利用固态软件定义的 HPM 来实现前所未有的反电子效果。Leonidas 地面系统可实现 360° 基地保护,并具有经过验证的反集群和精确打击能力。Leonidas Pod 可实现超视距电子攻击能力。Epirus 的 Leonidas 系统共同构成了多层防御力场,可防御所有领域的电子威胁。Epirus 的产品提供交钥匙功能,可使用同样强大和精确的定向能脉冲破坏、禁用和摧毁目标的关键电子元件。
一、引言 航天技术的飞速发展导致运行中的航天器数量显著增加,而这些航天器现在面临着来自太空垃圾的严重威胁。这些碎片主要来自频繁的发射活动,导致卫星和其他太空资产的风险越来越大。截至 2022 年 3 月,美国太空监视网络 (SSN) 已记录了大约 25,000 件太空碎片、报废航天器和活跃卫星,预计这一数字还将持续上升。与大型碎片的碰撞会彻底摧毁航天器,而即使是高速飞行的小碎片也会造成严重损坏,导致性能下降或完全失灵。因此,有效跟踪和预测空间碎片对于保护运行中的航天器和确保太空探索的可持续性至关重要。空间碎片跟踪不仅需要检测空间碎片的存在,还需要预测其轨迹以减轻碰撞。空间碎片跟踪系统一般可分为地面系统和天基系统,每种系统都有其优点和局限性。地面系统使用地面上的望远镜和雷达,但受到天气条件和地球自转的限制。太空系统使用卫星或航天器上的传感器,可以更可靠地探测太空垃圾,而不会受到大气的干扰。其中,先进的算法和机器学习方法(例如,Tao 等人,2023 年提出了一种时空显着性网络)
Verma 已在 JPL 担任软件架构师 15 年,专注于端到端解决方案,使数据对科学界有用且相关。他曾在实验室参与过各种各样的项目:机器人建模、深空网络、癌症生物标志物研究、国防、气候科学数据系统设计和开源软件战略。目前,他是遥感分析终端用户观测产品科学数据系统组件的首席架构师和系统工程师,也是多任务地面系统和服务计划办公室赞助的开源项目的经理。他还与 JPL 设计师合作开展与数据可视化相关的外展工作。