最近,量子基础领域对 Page-Wootters (PW) 形式主义的兴趣激增,并且基于内部量子参考系 (IQRF) 的相关概念开发了一项新研究计划。这项研究得出了许多令人兴奋的结果,为时间本质、参考系和等效原理等问题的深层问题提供了新的见解。这些问题使 PW 和 IQRF 研究计划正好处于量子力学基础和正在进行的量子引力理论探索的交汇处,因此,了解这些计划的结果对我们理解这些领域究竟意味着什么,是非常有意义的。在本文中,我们旨在阐明 PW 和 IQRF 计划的一些主要主题的基础性影响,尽管我们当然无法涵盖这些领域研究人员所取得的所有成就。这些研究计划的一个特点引发了许多问题,那就是 PW 形式主义和更普遍意义上的 IQRF 研究计划显然没有为波函数坍缩机制或任何其他可确保测量具有唯一结果的方法留出空间。因此,人们可能会认为,为了认真对待这些研究计划,我们必须采用埃弗雷特解释、新哥本哈根解释或其他不坚持唯一测量结果的解释。因此,为了理解这项研究的基础意义,重要的是确定 PW 和 IQRF 形式主义是否隐含地依赖于量子力学的某种解释,以及是否有可能在单一世界现实主义解释的背景下理解它们的结果。围绕 PW 和 IQRF 形式主义的操作凭证也存在重要问题。这两种方法的支持者通常都以操作性的角度来推动他们的研究——例如,参考文献 [1] 认为“将操作性的观点扩展到量子理论,人们会通过测量充当时钟的量子系统来定义时间。”这种对时间的操作性方法听起来非常合理(事实上,它继承自爱因斯坦在狭义和广义相对论中对时间的方法),但重要的是要记住,这些框架通常不会明确地模拟观察者,因此在形式结果和实际观察者执行的操作之间仍然存在需要弥合的差距。弥合这一差距可能需要我们采取一些关于观察者角色的立场,以及 PW 和 IQRF 形式化归因于测量结果的概率的性质。因此,在简要介绍 PW 和 IQRF 研究计划后,我们将把我们的探究分为四个问题,事实上,所有这些都是相互关联的:
量子力学是 20 世纪最成功的科学理论之一,它忠实地模拟了微观世界的现象。其最显著的特征——纠缠 [1] 和波粒二象性 [2]——的体现需要精确准备系统的状态并检测单个粒子。基于电磁相互作用的量子工程合适设备最近才出现。在理论方面,精确控制量子态的可能性催生了量子信息理论 [3]。将纠缠和相干性视为资源 [4] 引发了诱人的技术前景,包括量子计算 [5]、量子密码学 [6] 和量子传感 [7]。与此同时,量子场论源于量子力学与狭义相对论 [8] 的统一。它是粒子物理学标准模型的核心,为研究高能现象提供了极其精确的框架。量子理论的巨大成功引发了人们对其普遍性和有效性极限的质疑。是否存在一种违背基本量子原理的“后量子”理论?如果是这样,它将在哪种物理状态下显现?这些问题已从许多不同的角度展开。其中之一,早在 1960 年由路易·德布罗意 [9] 概述,假设对薛定谔方程进行非线性修正 [10, 11],可能还修改了玻恩规则 [12, 13]。一类相关的理论寻求量子波函数坍缩背后的客观机制 [14]。最近发展出的一种独特策略基于非局域关联的可能性,这种关联比量子力学预测的关联更强 [15, 16, 17, 18]。然而,还有一条不同的路线,即从纯操作的角度将量子理论公理化,这开辟了一个更广泛的所谓广义概率理论框架(见 [19] 及其参考文献)。通常人们认为,如果有任何偏离标准量子理论的东西,那么它们可能与引力场的性质有关 [14]。这一假设指向两个有趣的物理区域。第一个区域由普朗克长度 1.6·10-35 m 量级的极短距离或普朗克能量 1.2·1019 GeV 左右的极大能量决定 [20, 21, 22]。第二种区域涉及尺寸 ≳10-6 m 和质量 ≳106 GeV/ c2 的宏观物体的量子叠加 [14, 23]。迄今为止,尚未有任何探索这两个领域的实验暗示出任何超越标准量子理论的新物理学[24, 25, 26]。
William Horrocks,OPTI 646 最终论文摘要。虽然量子信息科学在概念上与经典计算和理论有许多相似之处,但需要从头开始重新构想一些组件,才能有效地处理量子信息。“记忆”的概念,更具体地说,信息存储的构成就是这些概念之一。量子存储系统是众多对 NISQ 设备及其他设备的操作至关重要的系统之一。虽然量子存储器的基本功能类似于经典存储器,但量子状态下脆弱信息的细微差别需要仔细构建存储系统。在解决了量子存储器的基本功能之后,将介绍一个简单的实现,以进一步阐述要点。与传统计算类似,由于功能相似,多种设备都属于“存储器”的标签,但人们可以选择一些特征来优化其他特征,以最适合当前的情况。最后,我将以快速提及量子存储器协议和应用程序的一些有趣的最新发展来结束这篇评论。感兴趣的读者将根据需要参考文献。 1. 基本原理和功能 如前所述,量子存储器在功能上在概念上与经典存储器相似。一般来说,两者都负责记录所需信息并允许用户在稍后指定的时间访问。在非常简单的层面上,经典计算中的读写过程非常简单。要写入,外部系统输出一个二进制值零或一,该值被发送到经典存储器并被观察,并且存储器系统的一部分被更改以反映传入的值。类似地,读取操作可以被认为是逆操作;读取请求在指定时间触发,观察、复制存储器中的指定值并将其发送到所需位置。 在量子存储系统中,虽然中心思想相似,但量子信息所带来的挑战(主要是由于坍缩假设和不可克隆定理)要求谨慎处理存储问题。虽然期望很简单,但实现往往并非如此;必须在不改变系统的情况下“记录”未知的量子状态,并在用户定义的时间重现,同时避免直接干扰状态。由于量子信息的脆弱性,要高效完成这项工作相当困难。然而,正如量子力学提出挑战一样,巧妙地使用基本的量子光学概念可以提供多种解决方案。这些解决方案的复杂性最好通过一个例子来说明。2. 实验实现、性能参数和附加功能虽然它们都具有相似的功能,将量子记忆系统划分为不同的类别有助于使问题更容易处理。根据(Simon 等人,2010 年),量子记忆方案可以分为四个不同的类别:单光子记忆、一般状态记忆