1纪念斯隆·凯特林(Sloan Kettering)癌症中心,美国纽约,美国; 2梅奥诊所 - 美国佛罗里达州杰克逊维尔杰克逊维尔; 3意大利米兰的助理大都会大都会尼古尔达; 4 Weill Cornell Medicine,美国纽约,美国; 5UniveritàVita-Salute San Raffaele,意大利米兰; 6意大利米兰的Irccs Ospedale San Raffaele; 7德国杜塞尔多夫Arensia探索医学研究所; 8阿尔弗雷德医院和莫纳什大学,澳大利亚维克,墨尔本; 9澳大利亚新南威尔士州康科德大学悉尼分校的Concord遣返综合医院;美国马萨诸塞州波士顿的达纳 - 法伯癌研究所10; 11乌尔姆大学,德国乌尔姆; 12 Beigene(Shanghai)Co,Ltd,中国上海; 13美国加利福尼亚州圣马特奥市Beigene USA,Inc;皇家墨尔本医院和墨尔本大学,澳大利亚维克,墨尔本大学的彼得·麦卡勒姆癌症中心14号
1 蛋白质科学、蛋白质组学和表观遗传信号实验室(PPES)和综合个性化和精准肿瘤学网络(IPPON),安特卫普大学生物医学科学系,Campus Drie Eiken,Universiteitsplein 1,2610 Wilrijk,比利时;chandra.ace@gmail.com(CSC);claudina.pereznovo@uantwerpen.be(CP-N.);kendeclerck90@hotmail.com(KD);ajaypalagani@gmail.com(AP);xaveer.vanostade@uantwerpen.be(XVO)2 安特卫普可持续性和医学应用等离子体实验室(PLASMANT),安特卫普大学化学系,2610 Wilrijk,比利时;priyanka.shaw@uantwerpen.be(PS); annemie.bogaerts@uantwerpen.be (AB) 3 PamGene International BV, 5211 Hertogenbosch, 荷兰;srangarajan@pamgene.com 4 安特卫普生物医学信息学网络(Biomina),安特卫普大学信息学系,2610 Wilrijk,比利时;bart.cuypers@uantwerpen.be (BC);nicolas.deneuter@uantwerpen.be (NDN);kris.laukens@uantwerpen.be (KL) 5 新加坡南洋理工大学李光前医学院淋巴细胞信号研究实验室,新加坡 1308232,新加坡;fazil.turabe@gmail.com (FMHUT);nkverma@ntu.edu.sg (NKV) 6 根特大学内科系血液学系,9000 根特,比利时; fritz.offner@ugent.be 7 根特大学生物分子医学系,9000 根特,比利时;pieter.vanvlierberghe@ugent.be * 通信地址:emilie.logie@uantwerpen.be (EL);wim.vandenberghe@uantwerpen.be (WVB);电话:+32-3265-2318 (EL) † 这些作者对本文的贡献相同。
samburu中的年降雨量12图2降雨的年度周期,平均温度,最高温度和最低温度的温度13图3桑布鲁县1981- 2022年降雨量的年变化14图4桑布鲁县的季节性降雨差异15图5肯尼亚对不同GHG排放量的空气温度预测。 16图6肯尼亚不同温室气体排放方案的年平均降水预测,相对于2000年。 17图7桑布鲁县年度温度的空间变化18图8桑布鲁县年度降雨投影的时间变化19图9 MAM降雨变化20图10 OND降雨变化20图11最高预测温度趋势21图12最低投影温度趋势21samburu中的年降雨量12图2降雨的年度周期,平均温度,最高温度和最低温度的温度13图3桑布鲁县1981- 2022年降雨量的年变化14图4桑布鲁县的季节性降雨差异15图5肯尼亚对不同GHG排放量的空气温度预测。16图6肯尼亚不同温室气体排放方案的年平均降水预测,相对于2000年。17图7桑布鲁县年度温度的空间变化18图8桑布鲁县年度降雨投影的时间变化19图9 MAM降雨变化20图10 OND降雨变化20图11最高预测温度趋势21图12最低投影温度趋势21
伯克哈德将军出生于 1964 年 7 月 30 日,已婚,有三个孩子。伯克哈德将军毕业于圣西尔军事学院(“法国自由军校学员” 85-88 级),随后进入步兵学校学习,之后被派往卡尔维(科西嘉岛)第二外籍军团空降团 (2e REP)。他在团内担任过战斗排长、探路者排长、连长和作战官,曾多次被派往法属圭亚那、伊拉克、前南斯拉夫、乍得和加蓬执行作战任务。1996 年,他被派往巴黎法国联合参谋部,担任联合行动中心 (CPCO) 的参谋。2000 年,他从高级参谋课程和联合战争学院毕业后,于 2000 年至 2002 年被分配到卡斯泰尔诺达里的第 4 外籍军团 (4e RE),担任 S3。2001 年晋升为中校,2002 年被派往卡宴 (法属圭亚那) 担任联合总部作战部门负责人两年。2004 年,他回到巴黎,担任 CPCO J3 欧洲小组的副手。2005 年,他晋升为上校。随后,他被派往科特迪瓦一年,担任法国“独角兽”行动指挥官的军事助理。2007 年至 2008 年,他担任联合参谋部/通信部副主任,并两次被派往阿富汗。2008 年,他被选为驻吉布提第 13 外籍军团半旅 (13e DBLE) 指挥官。2010 年 8 月,他接任联合参谋部/通信部主任一职,任期三年。2013 年 9 月,他被任命为法兰西共和国总统的国家情报顾问。2014 年晋升为准将,2015 年被任命为 CPCO 副主任,随后于 2017 年 8 月被任命为 CPCO 主任,并晋升为少将。2018 年 8 月,他被任命为陆军监察员,并晋升为中将。他于 2019 年 7 月 31 日接任法国陆军 (CEMAT) 参谋长,并于同一天晋升为将军。2021 年 7 月 22 日,他被任命为法国国防参谋长。蒂埃里·伯克哈德将军是法国荣誉军团大官 (grand officier de la Légion d'honneur) 和国家功绩勋章 (commandeur de l'Ordre national du Mérite) 指挥官,并因海外行动获得法国战争十字勋章 (Croix de Guerre) 和法国杰出服务十字勋章 (Croix de la Valeur Militaire)。他已婚,是三个孩子的父亲
下游的洪水和上游的高河水流量。气候变化导致海平面上升和河流流量达到峰值,这意味着布里斯托尔中心大面积洪水可能成为一种相对频繁的事件(图 7)。布里斯托尔有洪水泛滥的历史。过去十年中,超过 20 次小型潮汐事件淹没了河流周围的房屋和/或道路,包括 Sea Mills、Portway、Cumberland Basin、Avon Crescent、Coronation Road、Cattle Market Road 和 St Philip's,2020 年 3 月的最高值。洪水目前对生命、财产、福祉以及城市及更广泛地区的长期经济繁荣构成了威胁。今天的严重洪水将导致危险的洪水造成持久而广泛的影响,财产损失、基础设施损坏和破坏以及文化遗产的丧失。
完整描述:https://lib.ui.ac.id/detail?id=9999920545458&lokasi=lokal ------------------------------------------------------------------------------------------ 摘要 实现印度尼西亚 2030 年 NDC 目标的策略之一是通过开发可再生能源发电厂,以及从化石燃料向可再生能源的转变。使用柴油发电厂,特别是在布鲁岛作为唯一电力供应商,会导致排放,并增加公用事业系统的能源成本 (CoE)。另一方面,布鲁岛拥有丰富的可再生能源潜力,如地热能、水能、生物能、太阳能等。本研究旨在通过考虑可再生能源结构、财务可行性、减少当地电力系统能源消耗量、减少二氧化碳排放以及当地工业负荷(即渔业)的潜在增长,设计布鲁岛的最佳发电系统。部门。本研究利用 HOMER 软件获得了一种能够为负载提供最优化可再生能源渗透率、最低平准化能源成本 (LCOE) 和最低二氧化碳排放量的发电厂场景。布鲁岛电力系统共计7个系统,分为4个系统,即原有4个分布式系统组成的综合系统和另外3个分布式系统。本研究的结果为每个系统提供了最优的混合或完全基于可再生能源的发电厂配置。这种配置可以将能源成本降低至 20.17 cUSD/kWh,并将二氧化碳排放量降低至零。 ......印尼实现2030年NDC目标的策略之一是发展可再生能源发电厂,以及从化石燃料向可再生能源的转变。使用柴油发电厂,特别是布鲁岛作为唯一电力供应的情况,会导致排放,并增加公用事业系统的能源成本 (CoE)。另一方面,布鲁岛拥有丰富的可再生能源潜力,如地热能、水能、生物能、太阳能等。本研究旨在通过考虑可再生能源结构、财务可行性、减少当地电力系统的能源消耗、减少二氧化碳排放以及当地产业(即渔业部门)的潜在负荷增长来设计布鲁岛的最佳发电系统。本研究利用 HOMER 软件获得了一种发电场景,该场景可以为负载提供最优化的可再生能源渗透率、最低的平准化能源成本 (LCOE) 和最低的二氧化碳排放量。布鲁岛电力系统共计7个系统,分为4个系统,即原有4个分布式系统组成的综合系统和另外3个分布式系统。本研究结果为每个系统给出了混合或完全可再生能源发电厂配置的最优配置。这些配置可将能源成本降低高达 20.17 cUSD/kWh,并实现二氧化碳排放量为零。
严重减损是指对自然价值的直接和间接影响对附近价值的生存能力产生重大和/或不可接受的后果,包括景观的繁殖和/或持续性。可能考虑的因素包括:栖息地或植被的质量;价值相对于影响规模的要求;当前的保护状况和开发对此的影响;物种在某个区域的存在/不存在;该区域对于连通性的重要性;以及通过改善受影响价值直接范围内的保护措施可以抵消影响的程度。
荷兰埃因霍温埃因霍温理工大学在 SEBAN 联盟框架内:飞利浦、IMEC、TMSi、STW • 智能能源体域网络 (SEBAN) 是一种家庭妊娠监测系统,使用(胎儿)心电图 (fECG) 和子宫电图 (EHG)。 • 收集利益相关者的项目需求。 • 进行用户研究,根据用户需求(准妈妈和看护者)收集设计需求。 • 迭代设计一款舒适、不显眼的纺织服装,并集成柔性电子设备。 • 用户对系统进行评估并根据用户的反馈进行改进。 • 与不同的行业合作伙伴进行团队和项目管理。
Korhan Büyüktürkoğlu 博士于 1999 年毕业于中东技术大学心理学系。随后,他于 2007 年在安卡拉大学获得社会心理学硕士学位。他在德国图宾根大学国际马克斯普朗克研究院获得博士学位(神经科学),在那里他应用实时 fMRI 和 EEG 的脑机接口治疗强迫症、帕金森病、中风和抑郁症等神经精神疾病。2015 年至 2017 年,他继续在美国纽约西奈山伊坎医学院担任博士后研究员。2017 年至 2019 年,他在美国纽约哥伦比亚大学进行第二次博士后研究。在博士后研究期间,他使用功能、结构、扩散 MRI、MR 波谱和 EEG 探索了多发性硬化症 (MS) 中的认知障碍。
结果:在指数期内共有 3064 名患者开始接受 BTKi 治疗(1L n=2815;2L+ n=249)。1L 患者的中位年龄(范围)为 72 岁(33-90 岁),2L+ 患者的中位年龄为 72 岁(42-89 岁)。1L 和 2L+ 患者中男性占比分别为 63.1% 和 65.5%。1L 患者中,49.3% 的患者接受 ibru 治疗,43.4% 的患者接受 acala 治疗,7.2% 的患者接受 zanu 治疗。2L+ 患者也观察到了类似的趋势。与 acala 或 zanu 相比,接受 1L ibru 治疗的患者中,出现心血管不良反应的患者更多;第 6 个月分别为 12.1%、7.6% 和 7.3%(P <0.05),第 9 个月分别为 14.6%、9.4% 和 8.5%(P <0.05)。在接受 1 线 ibru 治疗的患者中,12.7% 停止使用 ibru 并改用 acala 或 zanu。ibru 的 1 线 TTD 中位值短于 acala 或 zanu(表格)。在第 6 个月和第 12 个月,zanu 继续治疗的相关概率高于 ibru 或 acala(表格)。zanu 未达到中位 TTNT,而 ibru 为 30.2 个月,acala 为 35.8 个月。