建议采取的行动:环境委员会和公用事业委员会建议采用法令01- O-25,以创建公平的社区主导的脱碳方法。建议采取的行动:环境委员会和公用事业委员会建议采用法令01- O-25,以创建公平的社区主导的脱碳方法。建议采取的行动:环境委员会和公用事业委员会建议采用法令01- O-25,以创建公平的社区主导的脱碳方法。鲤鱼:市政业务,建筑效率,可再生能源,弹性法规,实施,问责制和合伙企业:市政运营,建筑效率,可再生能源,可再生能源,弹性法规,实施,问责制,责任及合伙企业
城市和区域规划在 21 世纪面临着前所未有的挑战,从快速的城市化和人口增长到气候变化和资源枯竭。在应对这些挑战时,人工智能 (AI) 已成为规划人员的变革性工具集,提供高级分析、预测建模和优化功能。在本文中,作者讨论了如何将人工智能融入印度社会经济格局中的城市和区域规划。它强调了使用机器学习来预测未来趋势和解释复杂数据集、使用各种人工智能工具进行空间规划的地理空间分析以及用于数据挖掘的自然语言处理。作为理解和改善城市基础设施的一种方式,深度学习技术可用于城市图像分析和基于代理的建模以及城市模拟,以实现更好的预测和决策。然而,许多因素使得在当地实施这些技术变得困难,例如缺乏有价值的本地数据、基础设施有限、员工之间的专业知识差距以及他们与现有规划流程的整合不佳。本文强烈强调机构能力建设、通过治理结构和开放数据计划进行机构间合作。重要的是,有迹象表明印度政府致力于发展人工智能,这些举措和政策都表明印度政府愿意接受这些技术,尽管迄今为止这些技术在印度城市和区域发展中的直接应用很少。
近年来,人工智能(AI)越来越多地用于解决城市的经济,社会,环境和治理挑战。由于其先进的能力,AI将成为地方政府实现智能和可持续发展的主要手段之一。AI用于城市规划的利用是一个相对研究的研究领域,特别是在理论与实践之间的差距方面。这项研究对正在考虑或应用AI技术的城市规划领域进行了全面的综述,并分析了AI技术如何支持或有可能支持智能和可持续发展的发展。关于方法论方法,这是PRISMA协议后的系统文献综述。获得的见解包括:(a)早期采用者在城市规划中的现实世界AI应用程序正在为更广泛的地方政府AI采用铺平道路; (b)在城市规划中实现更广泛的AI采用涉及主要利益相关者之间的合作和伙伴关系; (c)大数据是城市规划中有效AI利用的组成部分,并且; (d)人造和人类智能的融合对于充分解决城市化问题并实现智能和可持续发展至关重要。在视线中这些突出了通过高级数据和分析方法使计划更智能的重要性。
尽管有相当大的保护重点是针对城市土地转换以最快的速度发生的,但人们通常会忽略城市景观的重要性。维持城市地区的生物多样性不仅会使环境有利,而且与社会,经济和技术因素一起可以提高城市系统对干扰的稳定性,这一概念被称为“城市弹性”。在本合成论文中,我们探讨了城市弹性的生态维度,并特别关注鸟类生物多样性,因为鸟类易于观察,相对丰富,并且可以作为城市环境整体健康状况的指标。我们首先研究了生态弹性的概念,并讨论了与城市化相关的环境压力源在正在进行的鸟类生物多样性危机中的作用。然后,我们概述了城市环境的特征,这些特征可能会促进鸟类的生态弹性,以及社会和经济因素与城市生态弹性之间的关联。最后,我们提供了有关未来研究的建议,以提高城市生态弹性的策略,因此,在城市生态学,生态系统生态学,环境正义和城市规划的交集中,整个城市弹性。由于预计到2050年,全球68%的人口将居住在城市地区,因此,科学家,城市规划师,土木工程师,建筑师和其他人必须将城市生态弹性视为环境健康和城市对未来自然和人性化压力的弹性的维度。
城市绿色基础设施(UGI)在通过自适应管理方法将生物多样性保护与可持续城市发展的可持续发展方面至关重要。本文介绍了一个综合概念框架,该框架整合了生态原理,城市规划策略和自适应管理方法,以培养有弹性和生物多样性的城市景观。UGI的本质在于它能够增强生态连通性,恢复生态系统功能并为城市环境中各种风水和动物群提供栖息地的能力。统治UGI设计的基本原则强调了其多功能性,连通性,多样性和可访问性,强调了以其迭代性和参与性为标志的适应性管理的重要性。尽管城市化带来的挑战,例如栖息地丧失,污染和气候变化,UGI干预措施为增强栖息地质量,连通性和生态系统弹性提供了有希望的途径。全球案例研究表明,UGI在生物多样性保护中的有效性,利用绿色屋顶,城市森林和社区花园等计划。UGI通过在各个领域提供多种生态系统服务,为可持续的城市发展做出了重要贡献。自适应管理对于有效的UGI规划和实施至关重要,在不断发展的环境条件下确保灵活性。但是,UGI遇到了障碍,包括资金限制,机构分裂和公平问题。应对这些挑战需要创新的培养机制,社区参与和政策创新。ugi提出了一种变革性的途径,可以促进弹性,生物多样性和可持续的城市景观,这对于城市在21世纪必须蓬勃发展。
摘要将深层生成模型纳入城市形式的生成是支持城市设计过程的一种创新且有前途的方法。但是,大多数深层生成的城市形式模型基于图像表示,这些图像表示并未明确考虑城市形式元素之间的拓扑关系。旨在开发深层生成模型并考虑拓扑信息的帮助下,本文回顾了城市形式的生成,深层生成的模型/深度图生成以及建筑和城市形式的深层生成模型的最新艺术状态。基于文献综述,提出了一个基于深层生成模型的基于拓扑的城市形式生成框架。深层生成模型的街道网络生成的假设forgraphgergrotandplot/building configurationGenerationByDeepgenerativeModels/Space语法以及所提出的框架的可行性需要在未来的研究中进行验证。
本文介绍了我们针对 2021 年人工智能城市挑战赛 (AICITY21) 的 Track2 的解决方案。Track2 是一个使用真实世界数据和合成数据的车辆重新识别 (ReID) 任务。在本次挑战中,我们主要关注四个点,即训练数据、无监督领域自适应 (UDA) 训练、后处理、模型集成。(1)裁剪训练数据和使用合成数据都可以帮助模型学习更多判别性特征。(2)由于测试集中有一个在训练集中未出现的新场景,因此 UDA 方法在挑战中表现良好。(3)后处理技术包括重新排名、图像到轨迹检索、摄像头间融合等,可显著提高最终性能。(4)我们集成了基于 CNN 的模型和基于 Transformer 的模型,它们提供了不同的表示多样性。通过上述技巧,我们的方法最终取得了 0.7445 的 mAP 分数,在比赛中获得第一名。代码可在 https://github.com/michuanhaohao/AICITY2021_Track2_DMT 获得。
ZCBAP是围绕建筑物生命周期各个阶段的针对干预措施组成的分阶段方法结构的。行动计划分为阶段,例如施工前,施工,占用和寿命终止,每种都采用一套旨在最大程度减少碳排放的干预措施。例如,在建设前阶段,干预措施着重于促进被动和低碳建筑以及补充政策和监管框架的设计。在施工阶段,干预措施解决了现场实践和资源效率,而占用阶段包括干预措施,以确保运营能源效率和居住者福祉。最后,临终阶段包括旨在负责解构和材料回收利用的干预措施。
根据美国劳工统计局的数据,“一项被广泛引用和效仿的研究表明,2010 年至 2030 年期间,美国 47% 的工作面临被自动化取代的风险” [2] 皮尤研究中心在 2023 年 7 月的一份报告中指出,“19% 的美国工人从事的工作最容易受到人工智能的影响,其中最重要的活动可能会被人工智能取代或辅助”和“人工智能接触程度高的工作往往是薪酬较高的领域,而大学教育和分析技能可以成为加分项” [3]。如果高等教育的主要目的是为学生的终身职业生涯做好准备,那么这些统计数据和预测就不容忽视——大学需要帮助学生为这一现实以及新的与人工智能相关的工作做好准备;许多新的工作领域和行业尚不存在。
