2.3 这些铝合金容易疲劳退化;铝结构中已经观察到严重的开裂[8.3, 8.4],由于腐蚀疲劳,在海水中开裂的情况会进一步加剧。5xxx系列合金以其良好的抗一般腐蚀性能而闻名,其未涂漆结构已部署在暴露于海水的位置;尽管如此,这些合金在长时间高于65°C的高温下容易敏化。在这种情况下,Mg 3 Al 2 沉淀物可能沿晶界形成,与铝基体相比起阳极作用[8.5];这可能导致应力腐蚀开裂(SCC)、晶间腐蚀和/或剥落。
摘要:近年来,增材制造技术越来越广泛,其中发展最为深入的是金属基体上的直接金属沉积 (DMD)、合金和陶瓷材料。这项研究展示了在 1045 结构钢上沉积异质金属合金(镍基合金和 Fe-Al 青铜)有效形成涂层的可能性。研究考虑了复合涂层的显微硬度、微观结构和摩擦学性能的变化,这些变化取决于 DMD 处理过程中的激光点速度和间距。结果表明,如果正确选择复合涂层的成分,则可能存在 DMD 条件,以确保它们之间以及与基体之间的可靠和持久连接。
沉积物的显微照片;请注意,较大的碳化钨颗粒位于复合碳化物和块状耐火碳化物的基体中。焊接说明要硬化的区域应无锈蚀、氧化皮、油脂或其他污垢。根据母材合金和要硬化的区域的大小,建议的预热温度应在 100-250°C 之间。强烈建议将电压和焊接电流保持在尽可能低的设置,以保持碳化钨颗粒的完整性。在焊接过程中,应激活电弧,使焊接金属沉积在粗滴中,而不是以平滑的流动方式运行(表明参数设置过高)。焊后控制冷却非常有益。沉积物不可加工。研磨至所需的表面光洁度。
添加过渡元素(如 Cu、Fe 和 Ni)的铸造近共晶 Al-Si 合金是航空航天和汽车工业中常用的材料。[1,2] 此类合金的微观结构特点是共晶和初生 Si 以及嵌入 Al 基体中的多种富 Ni、Fe 和 Cu 铝化物形成的 3D 互连网络。[3 – 7] 在高温下(最高达约 300 – 350 ℃)长时间使用后,铝基体会过时,从而降低其强度和蠕变性能。为了提高这些 Al-Si 合金的强度和抗蠕变性能,可以使用额外的陶瓷增强材料,如短纤维和颗粒。[8 – 10] 研究表明,此类复合材料的微观机械行为在很大程度上取决于纤维的取向、颗粒的空间分布、
由于金属合金重量轻、机械性能高,复合材料正在航空航天、汽车、船舶和建筑部件等多种先进应用中取代金属合金。因此,开发抗损伤和耐用的复合材料是必要的。当然,纤维基体脱粘、基体微裂纹和冲击损伤是复合材料应用中经常遇到的主要失效模式。此外,复合材料的部署和维护对机翼和尾翼等关键结构部件构成了挑战。因此,先进的材料和方法对于解决这些问题至关重要。使用复合材料的自修复技术似乎很有前景,因为它旨在修复或修复结构中的断裂和损伤起始和/或扩展。自修复复合材料可防止失效并延长关键结构的使用寿命。由于这些材料可以触发几乎自动修复,因此结构的维护可以大大简化,其中一些不需要任何外部干预即可启动修复过程。自修复复合材料能够在损坏开始时自动修复。早期的修复能力发展概念依赖于模仿树木和动物等生物体,这激发了开发自修复材料的研究。过去几十年来,人们一直在研究自修复材料和复合材料,特别是由自修复环氧树脂的发展推动(White 等人,2002 年)。自修复机制可分为两种类型,外在修复和内在修复。外在愈合基于使用愈合剂作为附加添加剂,而内在愈合涉及材料结构中的可逆分子键(超分子化学)。此外,还可以根据愈合方法进行分类,无论是自主愈合还是非自主愈合(即有或没有外部刺激)。开发自修复复合材料的一些众所周知的方法是包含微胶囊、中空纤维或含有愈合剂的血管网络(Blaiszik 等人,2008 年)。自修复也可以通过热激活,使用可逆相互作用或溶解的热塑性聚合物。形状记忆效应也已用于展示自修复特性。
分层 1. 分层主要是由于冲击损伤或制造不良引起的 [3, 23-25]。 2. CFRP 复合材料层合板的抗分层性较低 [26]。 3. 分层会降低复合材料的抗压强度,因为分层很容易使板层发生平面外位移 [27]。 这可能直接导致由于弯曲或锥形几何形状而导致的全厚度失效,或由于裂纹、层片脱落或自由边缘而导致的不连续性 [23]。 4. 分层可能导致横向基体裂纹连接并产生断裂面,从而导致结构失效,在纤维不断裂的情况下卸下载荷 [23]。 它还可能导致 CFRP 层合板的刚度和强度显著降低,并降低 CFRP 的结构可靠性 [10]。
半固态加工 - 对于熔点高、反应性强、无法进行传统压铸的材料,该工艺可实现永久模具压铸的净形状和高生产能力。半固态加工工艺已成功应用于铍含量低于 30% 的 AlBeMet ® 合金系统,使用 7075 和 6061 作为铝合金基体材料。SSM 属性符合基于 A356(或 7075 或 6061)和铍的混合物预测规则。SSM 工艺在具有复杂三维形状的大批量应用中具有成本效益。SSM 提供更低的输入材料成本和更低的加工成本来生产最终部件。SSM 允许较低的加工温度,从而比传统压铸技术具有更长的模具寿命。
近年来随着研究的深入,高导热复合材料多是通过构建三维网络结构来获得的。14,36制备三维CF骨架的常用方法有简单的共混法、37,38化学气相沉积法(CVD)、39电泳沉积法、40,41静电锁定法42-44和冷冻干燥取向法45,46然而在共混工艺和CVD作用下,CF细丝通常随机、无序地分布在前驱体基体中。具有无取向CF结构的复合材料不易实现连续的热传输路径。为了构建连续的导热网络结构,提高CF的取向度已被证明是一种有效的手段。13众所周知
摘要:随着社会经济的发展,机械工程、航空航天等行业对能够高效利用金属材料并获得良好性能的表面处理技术的需求日益增加。激光金属沉积(LMD)熔覆技术因其稀释率较低、热影响区较小、涂层与基体之间冶金结合良好等特点成为近年来的研究热点。本文综述了LMD技术中与缺陷形成直接相关的熔池晶粒生长机制、温度和应力分布的模拟技术,同时介绍了LMD技术中缺陷的抑制方法和熔覆层性能的提升方法。最后指出根据所需性能主动选择材料,结合可控加工工艺,形成相应的组织结构,最终主动实现预期功能,是LMD技术未来的发展方向。