基本的 CRISPR-Cas9 系统由两种分子组成,它们将一种或多种修饰引入 DNA。第一种分子 Cas9 是一种酶,它充当一对“分子剪刀”,可以在特定位置切割 DNA 的两条链,以便添加新的 DNA 片段或去除现有的 DNA。Cas9 的改良版本已被开发出来,只能切割一条 DNA 链,而另一种已被开发出来,可以与 DNA 结合而无需任何切割。第二种分子是一段称为向导 RNA (gRNA) 的 RNA,由一小段预先设计的 RNA 序列(约 20 个碱基长)组成,位于较长的 RNA 支架内。支架与 DNA 结合,预先设计的序列将 Cas9 引导到正确的位置。向导 RNA 具有与目标 DNA 序列互补的 RNA 碱基。这意味着向导 RNA 将只与目标序列结合并将 Cas9 递送到目标序列。当 Cas9 切割 DNA 时,细胞会识别出 DNA 已受损并试图修复。因此,科学家利用细胞自身的 DNA 修复机制来改变基因组中的一个或多个基因。
潜力不确定的克隆造血 (CHIP) 与心血管疾病 (CVD) 风险增加有关,据推测是通过炎症小体激活实现的。我们对 424,651 名英国生物银行参与者进行了炎症基因修饰扫描,以寻找 CHIP 相关的 CVD 风险。我们使用血液 DNA 的全外显子组测序数据确定了 CHIP,并将其作为一个复合模型进行建模,将所有驱动基因一起考虑,也分别考虑常见的驱动基因( DNMT3A 、 TET2 、 ASXL1 和 JAK2 )。我们为 26 个炎症小体相关基因开发了预测基因表达评分,并评估了它们如何改变 CHIP 相关的 CVD 风险。我们确定 IL1RAP 是跨基因 CHIP 相关 CVD 风险的潜在关键分子,并且 AIM2 基因表达增加导致 JAK2 和 ASXL1 相关的 CVD 风险增加。我们发现,CRISPR 诱导的 Asxl1 突变小鼠巨噬细胞对 AIM2 激动剂的炎症反应特别强烈,与 DNA 损伤反应增强以及 IL-10 分泌增加有关,反映了 ASXL1 CHIP 中 IL10 表达的 CVD 保护作用。我们的研究支持炎症小体在 CHIP 相关 CVD 中的作用,并提供了证据来支持针对 CHIP 相关 CVD 风险的基因特异性策略。
GSK 的生物伦理和行为准则要求遵守所有外部法律、法规和指南,这些法律、法规和指南适用于将克隆、基因改造和干细胞技术应用于药物研发。以下框架适用于我们代表 GSK 进行的所有内部和外部研究的行为准则,并概述了持续开发和提供有效和更安全药物的标准。克隆、基因改造和干细胞技术继续快速发展。现在,出于研究目的,对整个生物体(细菌、真菌、植物和动物)进行基因编辑已很常见。近年来,使用干细胞(见附件)治疗疾病和病症的情况也大幅增加。这些发展,加上从人类胚胎干细胞分离中产生的其他科学进步,已引起公众和监管机构对克隆、再生医学、干细胞研究和基因编辑方面的大量关注。本文概述了 GSK 对其中一些技术在医学研究中的重要性的看法,以及我们在适当情况下如何利用这些技术为尽可能多的人提供高质量且急需的医疗保健产品,以治疗和预防疾病。GSK 的看法是什么?
该系统具有通用性,为以有用的效率引入点突变和小插入/缺失提供了几乎无限的可能性,而无需共同传递修复模板。该系统的进一步改进应侧重于提高主要编辑效率,主要通过测试不同的 RT 和 pegRNA 设计。为了克服编辑窗口的限制,使用具有不同 PAM 要求的不同 Cas 蛋白将允许将复合物带到正确的位置以引入所需的修改。此外,需要详细分析该技术在植物中的特异性,并与其他可用的植物基因组修饰方法在脱靶编辑方面进行比较分析。最后,为了提高主要编辑技术的多功能性,有必要改进引入的插入/缺失的大小并减少编辑副产物。
● 温度:温度通常在25°C至30°C之间。发酵罐中使用的大多数微生物在这个温度范围内表现出最佳生长。如果温度过高或过低,那么微生物就会死亡。● pH值:需要保持pH值以确保最佳生长。不同的微生物具有不同的最佳pH值。如果pH值过酸或过碱,微生物就会死亡。● 氧气:微生物的有氧呼吸需要氧气。发酵罐通过搅拌液体培养基将这种氧气均匀分布。● 营养供应:微生物生长需要营养。这也使它们能够繁殖。● 废物:应控制废物的数量,因为废物的积累会限制生长。
本文已接受出版并经过完整的同行评审,但尚未经过文字编辑、排版、分页和校对过程,这可能会导致此版本与记录版本之间存在差异。请引用本文 doi: 10.1111/EXD.14314
本模块旨在帮助学生了解基因改造的道德和伦理影响,特别是关于使用 CRISPR 技术进行生殖系(可遗传)和体细胞(非遗传)基因编辑。本模块将通过伦理和概念视角研究最近的科学发现、突破和争议。虽然 CRISPR 具有多种潜在应用,但本模块探讨的是人类 DNA 的基因改造及其编辑的后果。CRISPR 是一种改编自细菌中自然产生的基因组编辑系统的技术,与以前使用的技术相比,它是一种更准确、更有效、更经济的改变 DNA 的方法。它允许遗传学家和医学研究人员通过删除、添加或改变部分 DNA 序列来编辑部分基因组。什么是 CRISPR,它是如何工作的?为什么科学家目前呼吁暂停在临床上使用 CRISPR 进行生殖系改造?CRISPR 的未来是什么,它将如何受到监管,它将如何影响我们生活的世界?该模块将深入探讨这些问题,并让课堂上的学生对使用这项技术背后的伦理影响有全新的认识。