本文介绍了 SciRP 于 2015 年出版的有关大脑操作系统的书籍 [1] 的四 (4) 个增补部分。它是该书的一种附录。假设读者对之前的书有所熟悉。该书本身提出了大脑操作系统的完整物理和数学蓝图。该书的第一个增补部分(见下文第 5 至 10 章)涉及上述蓝图与 2000 多年历史的逻辑和哲学所谓基本思维定律之间的关系,这些定律被认为有三 (3) 个,即 1) 同一律、2) 矛盾律和 3) 排中律。蓝图和定律不能同时成为大脑操作系统的最终基础。本文的目的是根据蓝图从严格的数学角度解释这些定律。这项增补构成了本文的主体部分。第五至第八章为本文奠定了基础。第九和第十章对这些定律进行了详细的数学分析。本书的第二部分(第 11 章)涉及大脑操作系统的定律和公理之间的区别。定律是物理学的一部分。公理是数学的一部分。由于大脑操作系统理论涉及物理学和数学,因此它同时展示了定律和公理。本书的第三部分(第 12 章)涉及大脑操作系统中另一种数字化的味道。书中有五 (5) 章。但大脑化学需要第六个。它被称为存在数字化。第四部分(第 13 章)考虑到对更深层次原因的无知,反思想象力在物理学理论中的作用。第一至第四章介绍了初步内容,大部分是从书中得出的一般概念的简要概述 [1] 。第 14 章最后收集了一些历史记录。
量子密码学有望通过基于物理基本定律,数学算法或计算技术的现状来革新安全通信。存在实施此类方法的设备,并且演示系统的性能正在不断改进。在接下来的几年中,即使不是几个月,这种系统可能会开始加密政府和工业中一些最有价值的秘密。
完成课程后,学习者将能够 CO1:描述和比较可再生和不可再生能源的转换 CO2:解释热力学、传热的基本定律及其应用 CO3:列出道路车辆的类型及其规格 CO4:说明道路车辆的各种基本部件和传动系统 CO5:讨论几种制造工艺并确定合适的工艺 CO6:解释各种类型的机制及其应用
物理科学项目 • 基础物理项目 • 材料科学、燃烧科学、流体物理、软物质/颗粒材料、量子物理、生物物理 • 了解物理系统和过程在不同重力水平下的行为 • 从机械上理解在没有重力或部分重力的情况下的物理现象,以开发数值和预测模型 • 使用微重力或行星际距离作为研究工具,研究物理学的基本定律
CPL 学习成果 参加 CPL 2 课程的学生具有计算机工程和其他相关领域的科学能力和专业知识,支持个人和团队的工作专业性,以及在工作环境中适应和发展自己的能力。 CPL 3 学生对计算机工程领域有科学的理解和掌握的技能,包括嵌入式系统和机器人、计算机网络和安全、软件工程、多媒体、游戏和人工智能,并以专业性、扎实的基础科学和工程知识为支持。 CPL 4 具有批判性和进步性的科学观点,能够适应计算机工程和相关领域的科学技术发展,能够通过多种渠道吸收知识,独立或集体练习技能,努力终身学习和自我发展。 CPL 5 能够批判性地分析所面临的问题,并能够运用适当的方法和工具来设计解决方案,从而基于标准实验产生可靠的系统解决方案,同时关注技术、经济、社会、法律和环境可持续性方面。 CPMK(课程学习成果) CPMK 2-1 学生能够解释电流、电压和电阻的基本定律,正确率为 80% CPMK 3-1 学生能够完整解释无源元件:电阻器、电容器和电感器,正确率为 80% CPMK 4-1 学生能够清晰有效地展示小组工作的成果 CPMK 5-1 学生能够正确应用简单电路的基本定律 CPMK 5-2 学生能够解释影响的原因
这种方法基于可再生资源的可持续能源系统,主要以电力为输出:风,太阳能和更传统的水电和一些地热产生。热力学的基本定律,即规则的构成系统的物理定律,很明显:每当能量从一个向量变为另一种矢量时(例如,电力为氢),大量的原始能量就会丢失。因此,由于(新型)电力可能被认为是“最高能源”,因此不应将其“在路线上”更改为fi nal使用。换句话说:如果能源服务可以用电提供,则应以这种方式进行。无法通过电力解决的应用程序称为“难以减少”应用程序,因为它们需要替代解决方案。
对称性是我们理解自然基本定律的关键。对称性的存在意味着物理系统在特定变换下是不变的,这种不变性可能会产生深远的影响。例如,对称性论证表明,如果对行动的激励是均衡的,系统将保持其初始状态。在这里,我们将这一原理应用于量子比特链,并表明可以设计其汉密尔顿量的对称性,以便从本质上保护量子信息免受弛豫和退相干的影响。我们表明,该系统的相干性相对于其各个组件的相干性得到了极大增强。这种量子比特链可以使用由相对较少数量的超导约瑟夫森结组成的简单架构来实现。
3 传热传质的基本原理 ......................................................................................69 3.1 简介 ...................................................................................................... 69 3.2 传输现象的基本关系 .............................................................................. 69 3.2.1 传输的基本定律 ............................................................................. 69 3.2.2 传热传质的机制 ............................................................................. 70 3.3 传导传热传质 ............................................................................................. 70 3.3.1 傅立叶定律和菲克定律 ............................................................................. 70 3.3.2 稳态传导传输中傅立叶定律和菲克定律的积分 ............................................................. 71 3.3.3 热导率、热扩散率和分子扩散率 ............................................................................. 73 3.3.4 稳态传导传热传质过程的示例 ............................................................................. 76 3.4 对流传热传质 ............................................................................................. 81 3.4.1 薄膜(或表面)传热传质系数................... 81 3.4.2 对流传热传质的经验相关性 ...................................................................................................... 84 3.4.3 稳态界面质量传递 ......................................................................................................