摘要:金属的生产占所有工业温室气体排放量的40%,全球能源消耗的10%,32亿吨矿物的开采和每年数十亿吨副产品。因此,金属必须变得更加可持续。循环经济模型不起作用,因为市场需求超过了目前的可用废料大约三分之二。即使在最佳条件下,将来至少三分之一的金属也将来自初级生产,从而产生巨大的排放。尽管已经讨论了金属对缓解策略和社会经济因素的影响,但使冶金部门更可持续的基本材料科学的解决方案较少。这可能归因于以下事实:可持续金属的领域描述了全球挑战,但尚未描述一个均匀的研究领域。然而,这一挑战的巨大幅度及其巨大的环境影响,这是由于每年生产的超过20亿吨金属引起的,它使其可持续性成为重要的研究主题,不仅从技术的角度来看,而且从基础材料研究的角度来看。因此,本文旨在识别和讨论最紧迫的科学瓶颈问题和关键机制,考虑了金属(矿物),次级(废料)和第三(重新开采)的金属合成以及能量密集型的下游处理。重点放在材料科学方面,尤其是那些有助于减少CO 2排放的材料科学方面,而对过程工程或经济的却更少。本文并未描述金属相关的温室气体排放对气候的破坏性影响,但是科学方法如何通过可以使冶金化石无效的研究来解决这一问题。内容仅考虑冶金可持续性(生产)的直接措施,而不是通过其性质(强度,重量,寿命,功能)杠杆作用的间接度量。
为了开发高级材料解决方案并改善预测模型,必须充分了解对广泛的外部刺激的基本材料反应[1]。在极端温度,机械应力,放射线和其他恶劣条件下的系统对未来的工程应用(例如深空探索[2]和先进的核反应堆[3])引起了人们的兴趣。单独的这些条件会带来重大挑战,尽管材料很少受到单个压力源。要捕获在这种环境中可能出现的协同作用,有必要将材料暴露于相关条件的组合中,以揭示基本机制之间的复杂相互作用[4]。sub-nm解决能力和应用刺激的组合使原位传输电子显微镜(TEM)成为探索Mateiales Science基本机制的强大工具[5]。通过将电子束成像与样品持有人的变量和外部硬件耦合,直接观察材料如何响应耦合的极端条件的响应。与建立硬件,进行实验和解释结果相关的挑战使原位tem成为研究的动态和活跃领域。近几十年来,原位显微镜的能力范围已实际增长,允许化学反应期间的纳米力学测试[6,7],用于放射损伤研究的离子辐射[8,9],紫外线可见光光照明光催化的光照明用于光催化[10],超级进程[10],超级进程[10],nano-sace [10] [10] [10] [10] [10] [12–15]。近几十年来,原位显微镜的能力范围已实际增长,允许化学反应期间的纳米力学测试[6,7],用于放射损伤研究的离子辐射[8,9],紫外线可见光光照明光催化的光照明用于光催化[10],超级进程[10],超级进程[10],nano-sace [10] [10] [10] [10] [10] [12–15]。Sandia国家实验室是经过重大修改的所在地,被称为原位辐射TEM(I 3 TEM)[16]。三个离子加速器的集成,激光暴露,加热和冷却功能,机械测试平台和高速成像功能使I 3 TEM唯一
LIB利用率上升增加了对关键原材料的需求,例如锂(Li),Nickel(Ni)和Cobalt(CO)。但是,这些基本材料中的大多数受特定国家的监管。在刚果民主共和国开采了一半以上的钴矿石,并在中国进行了改进,约有80%的锂由澳大利亚和智利控制。[2]原材料和生产领域的不均匀分布引起了人们对全球供应链的关注。结果,锂和钴价格正在上涨和波动,与此同时,地理垄断可能导致地方政府垄断原材料的供应。[3]因此,从可持续性的角度来看,必须建立从消费液(电动汽车,固定储物电池和家用电器)中回收的关键伴侣的次要供应到期这种潜在短缺的严重性。另一方面,由于LIB通常可以平均使用10年,因此[3,4]到2030年,用过的Libs的数量预计将超过500万吨。[5] LIB的主要组成部分是阴极材料(Lini X Co Y Mn Z O 2(0 ), anode materials (graphite), current collectors (alu- minum (Al) and copper (Cu)), electrolyte salts such as lithium hexafluorophosphate (LiPF 6 ), organic solvents (ethylene car- bonate (EC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC), etc.).), anode materials (graphite), current collectors (alu- minum (Al) and copper (Cu)), electrolyte salts such as lithium hexafluorophosphate (LiPF 6 ), organic solvents (ethylene car- bonate (EC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC), etc.).所有这些不同的成分都包含有害物质,并导致金属,灰尘,有机和氟污染。[6]垃圾填埋或焚化会损害生态系统。例如,一旦电极材料进入环境,来自阴极的金属离子,来自阳极的碳灰尘,强碱和来自电解质的重金属离子可能会引起严重的环境污染,危险等,包括提高土壤的pH值[7],[7]并产生毒性气体(HF,HF,HCL等)。此外,电池中的金属和电解质会损害人类健康。例如,钴可能通过地下水和其他通道进入人体,从而导致
X射线成像是一种众所周知的技术,用于对物体的非破坏性成像和表征。基于X射线放射图,可以获得对象的形状,密度和原子数的信息。这些功能使X射线成像高度适用于非破坏性分析和测试。A key technique in non-destructive radiography-based analysis is material de- composition, whose aim is to determine the materials composition of an object.在医学成像中,可以应用材料分解以区分良性和恶性肿瘤[2]。在货物检查中,可以将材料分解构成以识别农产品中的走私商品或杂质[3]。Two main techniques for material decomposition have been described in the literature: Dual Energy Material Decomposition (DEMD) and Single Energy Material Decomposition (SEMD).DEMD利用材料衰减系数的能量依赖性。The linear attenuation coefficient as a function of the energy can be modeled as a linear combination of basis functions, such as those describing the energy dependency of the photoelectric interaction and total cross-section of the Compton scattering.另一种方法是选择依赖能量的基本材料(例如骨和水)作为基础函数[4]。[5]。此技术使衰减中的差异在常规重建中是看不见的。另一种方法是获取物体的高和低能量X光片,从而产生具有独特投影值的X光片[6]。然后,使用查找表将投影值链接到路径长度。基于此信息,可以获得材料厚度。减少暴露需要改编硬件,例如双源单元或光子计数检测器[4]。此外,由于DEMD需要进行两次扫描,因此对物体的辐射暴露可能是一个问题,尤其是在医学成像中[4]。此外,查找表的创建可能很耗时[6]或不准确[7]。单能投影(SEMD)另一方面,通过使用远程长度的知识来估算仅一次扫描的材料组成。这些路径长度可以从CT重建[6]或从3D激光扫描仪获得的对象的表面图像估算[8]。最近,显示路径长度也可以通过将对象的表面网格注册到其扫描的投影中直接从几个X射线投影中恢复[9]。此方法不需要除X射线扫描仪或完整CT扫描以外的其他硬件,它提供了将其集成到材料分解过程中的潜力。我们提出的方法估计了用X射线光扫描的物体的均匀混合物的化学质量分数。CAD-ASTRA工具箱用于计算路径长度和模拟多色X射线射线照相。
国际原子能机构 (IAEA) 正在推动无损检测 (NDT) 技术(包括射线检测 (RT) 和相关方法)的工业应用,以确保工业设施和工艺运行的安全性和可靠性。无损检测技术对于提高工业产品质量、设备和工厂的安全性能(包括金属和混凝土结构和建筑的安全)至关重要。国际原子能机构在促进无损检测的使用和向成员国提供技术支持、协调无损检测人员的培训和认证以及建立国家认证和认证机构方面发挥着重要作用。所有这些努力使许多国家达到了成熟和自给自足的阶段,特别是在人员培训和认证领域以及向工业提供服务方面。这对提高工业产品和服务的质量产生了积极影响。无损检测方法主要用于检测、定位和测量表面和内部缺陷(在焊缝、铸件、锻件、复合材料、混凝土等中)。各种无损检测方法都用于预防性维护(飞机、桥梁)、原材料、半成品和成品检验、在役检验和工厂寿命评估研究。无损检测对于设施和产品的质量控制以及适用性评估(即所谓的工厂寿命评估)至关重要。无损检测评估工厂组件(加工线、管道、容器)的剩余使用寿命,提供准确的诊断,可以预测超出设计寿命的延长使用寿命。国际原子能机构的许多会议都讨论了工厂寿命评估无损检测的现状和趋势,这些会议涉及无损检测的发展、培训和教育。专家们已经在很大程度上证明,使用无损检测方法可以全面评估组件、设施和产品的预期寿命。工业设备和工程结构剩余寿命评估的无损检测技术已经在发达国家的日常服务中建立起来。混凝土结构和土木工程结构的无损检测检查是另一个发展中的课题,发展中国家对此非常感兴趣。需要培训材料,以协助发展中国家培养和持续培训和教育其无损检测专家。关于无损检测应用的培训课程文件提供了用于工厂寿命评估和混凝土结构的无损检测技术的基本信息。它描述了主要无损检测方法的原理和实践方面。它包含有关根据 ISO 标准进行无损检测工作质量控制和认证的有用信息。本培训教材可作为进一步提高无损检测专家资格的附加技术文件,也可作为行业管理人员和决策者了解无损检测前景的基本材料。它有助于将无损检测技术转让给发展中成员国。国际原子能机构感谢所有专家的宝贵贡献。负责本出版物的国际原子能机构官员是物理和化学科学司的 I. Einav。
产品概述DOW的微电子硅胶粘合剂旨在满足微电子和可选的电子包装行业的关键要求,包括高纯度,耐水性,热和电气稳定性。该产品具有极高的应力松弛和高温稳定性,并且很好地粘附在各种底物材料和组件上,而无需底漆。它也适用于需要具有低模量的材料,无铅焊接温度(260°C)或其他需要高可靠性的应用。该产品是一种易于使用的单组分产品,在热固化反应过程中不会产生副产品。固化的产品表现出极好的电绝缘。 清洁底物表面以清洁底物的表面,并用诸如Dow Corning Brand OS液体,Naphtha,矿物精神或甲基乙基酮(MEK)等溶液清除油性污渍。建议在可能的情况下进行表面的光抛光,以达到由于粘附面积增加而获得稳定的粘附特性。最后,用溶剂擦拭表面有助于去除粘附于标准表面上左侧的残留物。根据贴材和周围组件的特性,其他清洁方法可能有效,因此请确定哪种方法最适合您的个人情况。 基本材料测试有多种类型的底物,底物的表面条件因一种而异,因此不可能提供对粘附条件和粘附强度的一般解释。拉伸粘附试验需要对粘附层的100%内聚力分解,以实现针对特定底物的最高粘附强度。根据确定凝聚力分解,可以确定粘合剂和靶标底物之间的兼容性以及粘附所需的加热时间。另外,可以使用凝聚力的确定来确认表面污染的存在,例如霉菌释放剂,油,油脂和氧化物涂层。 兼容性某些材料,化学物质,交联和增塑剂可能会导致添加粘合剂的固化抑制。典型的固化抑制剂包括有机素,其他有机金属化合物,含有器官蛋白催化剂,硫,多硫化物,多硫酮,其他含硫的材料,不饱和烃塑料塑料化合物和焊料磁通残留物。如果底物或材料可能会导致治疗抑制作用,我们建议您针对您的预期应用进行小规模的一致性测试。如果底物和固化产物之间的界面处有液体或未固定的部分,则其在底物上的使用是不兼容的,并且表示治愈抑制作用。 如果您需要去除DOW电子粘合剂以进行缺陷分析,则可修复性道琼斯水平的流体很有用。有关这些产品的更多信息,请联系Dow。 使用的预防措施:此数据表中不包括使用所需的安全信息。在使用之前,请仔细阅读安全数据表(SD)和容器标签,以获取有关安全使用以及身体和健康危害的信息。您可以通过访问网站Dow.com/ja-jp购买安全数据表(SD)。
伊朗伊斯兰共和国享有悠久而悠久的历史,并拥有世界上最古老的文明之一。伊朗位于西南亚,中东,是世界上第18大的国家,从北至亚美尼亚或土库曼斯坦到达波斯湾的南部。该国的规模和地位历史使其成为了东西方和南北贸易路线的战略桥梁,这表明其可能成为商业区域枢纽和有吸引力的旅游目的地的潜力。伊朗是世界上享有四个独特季节的稀有国家之一。在北部,常绿森林在里海的美丽宁静水域上画了一条平行线,这使该国的气候最宜人。在南部,伊朗用华丽而有吸引力的棕榈树和炎热潮湿的气候与波斯湾接壤。在伊朗的东部,人们可以找到带有沙子和繁星夜晚的热甜点。在西部,这片广阔的土地在天空中高高的山脉,吸引了每个访客的眼睛。伊朗都有各种各样的旅游景点,从德黑兰的短途骑行中的滑雪坡到玻璃波斯波利斯的阿契美尼德帝国的2500年历史的废墟,以及Shiraz在Shiraz的Bagh-e-Eram Palace和谐花园,仅举几例。伊朗拥有26个联合国教科文组织世界遗产(24个文化和2个自然地点),比希腊更多 - 加上卡西亚海上的坚固海岸线,这使其成为远足的最佳国家之一,是20个山区度假胜地,冬季运动,波斯湾的海滩,波斯岛上的海滩以及圣殿Reza(Imam Reza)(Imam Reza)(Mimam Reza)。根据世界银行的伊朗经济监护仪,该国的GDP在2022/23年增长了3.8%,这是由服务和制造业扩张的驱动。尽管进行了制裁,但在全球石油市场上,石油部门也扩大了。它在2022年也有88,550,5.7亿人。波斯语是官方语言,伊斯兰教是该国的官方宗教。该国拥有丰富的自然资源,包括第一和第四天然气储量和石油储量,对北非石油富裕国家的石油收入的经济依赖最少。伊朗有很好的位置,可以对基本材料部门产生重大影响。特别是水泥,石头和钢。该国已经是世界上最大的水泥出口商,也是中东最大的水泥生产商。伊朗是其邻国电力的净出口国,拥有丰富的矿产财富,包括大型库珀,铅和锌储量。伊朗的开心果,藏红花,当然还有鱼子酱为农业带来了很大的声誉。它还产生了各种各样的农作物,并且是茄子,洋葱以及包括木瓜,无花果和西瓜在内的一系列水果的前五名生产商之一。
近年来,许多工业化国家都将越来越严格应用于工业排放和水,空气,食物和土壤的质量。通过定期对环境媒体的观察,对人居质量的正式关注,这意味着它对专业环境科学家的培训产生了重要的后果。监测机构将需要更多熟悉特殊障碍的分析师,这些特殊障碍可以使各种环境材料可以在可靠分析的道路中置于。也解释了这种分析的专业人员,尽管他们可能没有在地球化学分析的技术上接受培训,但仍需要认识到所采用的分析方法的局限性,并了解行业所依赖的质量控制机制,如果他们要从其数据中得出客观的和可靠的结论。令人惊讶的是,目前很少有书籍对这个复杂而持续发展的地区进行全面介绍。撰写本书的目的之一是为定量环境分析的学生和分析用户提供填补,并为当前正在使用的许多技术提供了清晰的介绍。这本书还针对更传统的学术地球科学市场,本科生和研究生,需要广泛概述的研究人员,以及想要最新的入门级文本的教师和监督员,这些文本将介绍针对纽约人和非特定主义者的量化量化量化原则。在更高级的水平上,这一需求得到了菲尔·波茨(Phil Potts)的手册Ojsilicate摇滚分析所满足的,但是,在向本科生和掌握学生教授学科多年后,我们深信需要与学生预算保持一致,并更容易随身携带介绍性文字!因此,这本书旨在为学生提供地球化学分析的专业用户,并希望能够了解可以应用于地球和环境材料的整个分析方法的更广泛的读者,并对他们的相对优点和局限性进行了批判性的认识。它已经结构化,以适应具有较大背景的读取者。首先有一个广泛的词汇表(附录B),并且定义的术语中有大胆的字符在文本中首次出现。其次,我们以各种方式在所有章节中都使用了文本/图形框:它们是一个有用的地方,可以使用一个以上的一章中提到的基本信息,可以使用它们来提供所有读者所要求的基本材料,并且它们对更专业的信息也只能对读者的一部分或二次阅读,它们也很有用。每个框的作者身份由末尾的缩写指示。最后,对于不熟悉“ diff泵”等的读者,有一个附录(a)总结了真空技术的元素。特别感谢Godfrey Fitton,Anthony Lewis和Philip Rowland,他们在后期介入,写了其他人未能交付的章节。我也对以下非常友好地提供了对单个章节或其他方式做出贡献的专家评论的人:Geoff Abbott,John Bailey,Joel Baker,
在2019年12月,在湖北省武汉市发现了许多病毒性肺炎病例。到2020年2月,全国范围内有20,000多例2019年冠状病毒疾病(Covid-19),有425例患者死亡。在这次暴发中,西方医学在不识别病原体的情况下进行有针对性的治疗很难,但是传统中药(TCM)可以通过综合征分化和治疗迅速确定原因(Zeng等,2020)。covid-19属于TCM中“流行病”类别,其病理变化首先出现在间质肺中(Yang and Fan,2021)。主要症状是发烧,干性咳嗽和疲劳。在严重的情况下,可能会发生肺合并(Miao等,2020; Xiong,2020; Zhan等,2020)。鉴于这些症状,应用了许多处方,例如金胡乌拉甘格颗粒,Shufeng Jiedu胶囊,Jingfang颗粒和Jinbei口服液体(JB。l),并在诊所显示出明显的治愈作用。在其中,JB。L在2020年2月在山东省(第二版)的新型冠状病毒肺炎的中药诊断和治疗计划中列出,我们随后的临床数据分析表明,JB的效果。L优于单一化学疗法组(Li等,2021)。JB。它具有补充气和滋养阴,驱除血液停滞和去除痰液的作用。因此,在本实验中,JB的化学组成。L is composed of Astragali radix , Codonopsis radix , Angelica sinensis , Glehniae radix , Scutellariae radix , Fritillariae cirrhosae bulbus , Chuanxiong rhizoma , Salvia miltiorrhiza radix , Pinelliae rhizoma praeparatum cumalumine , Lonicerae japonicae fl os , Forsythiae Fructus和Glycyrrhizae radix。尽管TCM处方具有一定的理论和临床应用基础,但复合TCM处方的材料基础很复杂,而动作机制是多种多样的,这给TCM的有效性带来了基本材料研究。近年来,连字符技术是对复杂矩阵中未知化合物的快速定性分析的强大工具,尤其是超出性液态色谱,以及四极杆的时间串联串联质量光谱法(UPLC-Q-Q-TOF-MS),这是有益于其高分辨率和敏感性的。这些方法已被证明是对TCM制剂快速分析的有效和高度敏感的工具(Gao等,2014; Zhang等,2017a; li等,2018; Wang等,2018; Sun等,2021)。此外,UPLC与三极四极质量光谱法(UPLC-QQQ-MS/MS)可以很好地应用于通过多个反应监测(MRM)模式对TCM多个化学成分的定量分析,这在TCM的现代化中具有很大的意义(Wu et and an e et al。 )。研究TCM效率的材料基础是解决TCM有效作用原理的先决条件,而确定TCM的有效组成部分是主要任务。l通过UPLC-Q-TOF-MS/MS定性确定,并且主要功能组件通过UPLC-MS/MS定量分析。这是关于JB化学成分的系统分析的第一个报告。l,为质量控制和对其药效学的深入研究提供了基础。
微生物生产颜料及其在食品和化妆品行业中的应用Pooja Mistry 1,Trupti Pandya 2 Bhagwan Mahavir基础和应用科学学院摘要:某些合成染料的负面影响正在推动对自然色的需求。细菌和真菌色素提供了一种自然产生的颜色的方便替代供应。它们比其他天然颜料具有许多优势,例如快速开发,简单处理和对天气的免疫力。该研究的主要目标是分离产生土壤的色素细菌。使用多种纯培养技术维持孤立的菌落。颜料可以放大许多应用中使用的颜色的现有调色板。最大颜料产量的各种参数是环境和健康问题,相比之下,微生物颜料是环保的,并在纺织工业中使用,微生物来源的色素是一个很好的选择,可以很容易地以高收率产生。被称为颜料的化学物质负责吸收可见光。称为颜料的化合物经常在业务中使用。由于它们的无毒构成,某些微生物制造颜色用于药品,化妆品,食品,染料和其他工业用途,因此对环境有益。天然食品着色剂是由微生物商业生产的。发酵提供了几种好处,包括更便宜的生产和简单的提取;改善的菌株可产生与季节无关的大量基本材料供应。(Rymbai等,2011)。关键字:微生物色素,土壤样品,细菌,纺织品和染料1。简介合成色优于稳定性,易于应用和成本效益的天然色素。近年来,天然色素是从食品,染料,化妆品和药品制造实践中分离出来的(Sanjay等,2007)。自然色素的主要来源是从动物,植物(Joshi等,2003)和微生物(Nagpal等,2011)获得的。微生物是可生物降解,可再生,环保的,并以其在纺织品染色,食物成分,化妆品和药物方面的用途而闻名(Shahid等,2013)。微生物的发展可以通过强大的状态来培养,并降低了原油或现代自然废物的特征。微生物可以在适度的培养基中有效发展,并快速速度,它们的发展是气候条件的自主。微生物产生多种色素包括聚酮化合物,类胡萝卜素,苯乙烯,酰基苯酚,吡咯和蒽醌,但这些颜料大多数除了类胡萝卜素和聚酮化合物(Stich等人,2002年)都对人有毒。食物材料的新鲜度是由其安全性和颜色表示的,也表现出良好的感官和美学价值。细菌色素因其对人类和环境的无害影响而使用(Ahmad等,2012)。在食品行业中纯化的微生物色素用作食品添加剂,具有抗氧化剂,颜色增强剂等特性。微生物是有机酸,酶,维生素,氨基酸和有机酸的良好来源。从微生物来源中提取色素,然后将其用作食用色素是合成染料的绝佳替代品(Malik等人,等等,2012年)。在易于使用的廉价培养基中,细菌物种创造的主要好处是快速,易于生长,完全没有大气条件。