特殊讲座Tokuron 2024.4-2025.3标题:对老化说:氧化还原药理学和精密医学教学人员:Chang Chen;日期和时间:2月27日,星期四,REIWA 5:45-17:15时间和日期:15:45-17:15,2月27日(THU.),2025年:医学研究大楼3楼,医学研究大楼3(3F)语言:英语摘要:人口老化已成为世界各地的重要问题抗氧化剂已被尝试用作抗衰老干预措施但是,临床结果仍然令人失望我们最近提出了精确氧化还原的概念,“ 5R”原理是抗氧化剂药理学的关键,即正确的物种,正确的位置,正确的时间,正确的水平和正确的目标作为氧化还原医学的指南我们的最新结果进一步验证了上述概念我们发现Ca 2+ /钙调蛋白依赖性蛋白激酶IIαs-硝化作用(SNO-CAMKIIα)在学习和记忆任务过程中会增加,而在自然衰老过程中则显着降低在主要的CAMKIIαS-硝基化位点(C280/289V)处于突变的小鼠暴露的认知障碍并减弱了长期增强(LTP)缺乏SNO-CAMKIIα会增加突触I(Syni)磷酸化,从而导致过度突触前释放概率,从而导致学习和记忆反应减少,而不仅在C280/289V小鼠中发生,而且在阿尔茨海默氏病(AD)小鼠和自然衰老的小鼠中也会发生根据“ 5R”原理,我们设计了一个胶分子,该胶分子精确地增加了SNO-CAMKIIα并成功挽救了小鼠的学习和记忆障碍。我们的发现表明,SNO-CAMKIIα的下调是一种新的机制,介导了与衰老有关的学习和记忆下降,并为氧化还原药理学和精密医学提供了新的灯光。有关发言人的信息:Chang Chen教授目前是中国科学院生物物理学研究所(CAS),CAS教授和CAS大学教授和Biomacromolecules国家实验室副主任(2012-20223)的首席研究员。她的主要研究兴趣是一氧化氮和s-硝酸(YL)ation和其他氧信号转导中的其他硫醇修饰。老化和相关疾病中的氧化还原调节;中药的机制。* *生体反応病理学
硕士课程在生物学和系统生物学研究所,生物科学与技术系,生物学和系统生物学研究所生物学和系统生物学研究所,生物学科学与技术学院,分子医学与技术研究所,分子医学研究所硕士课程在生物学和系统生物学研究所,生物科学与技术系,生物学和系统生物学研究所生物学和系统生物学研究所,生物学科学与技术学院,分子医学与技术研究所,分子医学研究所
Liu 等 [36] 在 1950 ℃ 和 50 MPa 压力的 SPS 过 程中,发现随着 TiB 2 的添加量由 5 mol% 增至 30 mol% ,复合陶瓷的硬度降低,断裂韧性增加。 除裂纹偏转和 TiB 2 的钉扎效应使 B 4 C 晶粒细化 ( 从 1.91 μm 减至 1.67 μm) 外,两相间位错的产生, 是 B 4 C 陶瓷增强、增韧的次要原因,其在陶瓷断 裂前吸收能量,造成局部强化 [37–38] 。研究发现, 添加 20 mol% TiB 2 时,复合陶瓷的相对密度为 97.91% ,维氏硬度为 (29.82±0.14) GPa ,断裂韧性 为 (3.70±0.08) MPa·m 1/2 。 3.1.2 Ti 单质引入 与直接添加 TiB 2 相比,在烧结过程中原位反 应生成 TiB 2 可以在较低的烧结温度下获得更高 的密度和更好的机械性能。 Gorle 等 [39] 将 Ti-B( 原 子比 1:2) 混合粉体以 5 wt.% 、 10 wt.% 和 20 wt.% 的比例加入到 B 4 C 粉末中,研磨 4 h 后通过 SPS 在 1400 ℃ 下获得致密的 B 4 C 复合陶瓷。由于 WC 污染,获得了由被 (Ti 0.9 W 0.1 )B 2 和 W 2 B 5 的细颗粒 包裹的 B 4 C 颗粒组成的无孔微结构。当 Ti-B 混合 物的量从 5 wt.% 增至 20 wt.% 时,烧结活化能从 234 kJ·mol −1 降至 155 kJ·mol −1 。含 5 wt.% Ti-B 混 合物的 B 4 C 复合材料的最大硬度为 (3225±218) HV 。由于 TiB 2 的原位形成反应是高 度放热并释放大量能量的自蔓延反应,因此,原 料颗粒界面间的实际温度预计高于 SPS 烧结温 度,同时,液相 W 2 B 5 的形成润湿了 B 4 C 表面, 有助于降低 B 4 C 晶粒的界面能,并加速了沿晶界
摘要:希望通过更少的步骤高效地合成有机化合物,但获得更高的产量,因为这样可以减少能源和试剂的使用、废物的产生,从而降低环境影响和成本。具有金属中心的(多)氟芳烃中氟取代基邻位的 C - H 键的反应性相对于间位和对位增强。因此,不经预功能化的(多)氟芳烃直接 C - H 功能化正成为有机化学中的一个重要研究领域。利用与 C - F 键邻位的 C - H 键的反应性对(多)氟化芳烃进行功能化的新型选择性方法正在不断被开发。本综述总结了反应性增强的原因以及随之而来的含(多)氟芳烃有机化合物合成的发展。
Technology, 2021, 201: 108541.[19] Steinke K, Groo L, Sodano H A. Laser induced graphene for in situ ballistic impact damage and delamination detection in aramid fiber reinforced composites [J].Composites Science and Technology, 2021, 202: 108551.[20] 杜晓云 , 李金宝 , 杨斌 , 等 .芳纶树脂液浸渍协同冷压 光制备高强度间位芳纶纸的研究 [J].中国造纸 , 2024, 43(4): 120 - 129.Du X Y, Li J B, Yang B, et al.Study on preparing high strength meta - aramid paper by aramid resin solution impregnation combined with cold pressing[J].China Pulp & Paper, 2024, 43(4): 120 - 129.[21] 关振虹 , 李丹 , 宋金苓 , 等 .易染间位芳纶的制备及其 性能 [J].纺织学报 , 2023, 44(6): 28 - 32.Guan Z H, Li D, Song J L, et al.Preparation and properties of dyeable meta - aramid fiber[J].Journal of Textile Research, 2023, 44(6): 28 - 32.[22] 朱文豪 , 宋欢 , 丁娉 , 等 .沉析纤维长度对间位芳纶纸 性能的影响 [J].中国造纸 , 2024, 43(1): 109 - 115.
摘要:随着全球变暖和温室效应的加剧,全球对制冷的需求日益增加。但是,传统的制冷方法不仅消耗了很多能量,而且还会产生诸如Co 2和臭氧(O 3)之类的温室气体(O 3),这将导致温室效应的强化,从而导致恶性循环。迫切需要开发一种干净的冷却技术。被动的白天辐射冷却已被证明是一种有效的策略,是以辐射形式转移到冷外层空间的形式的有效策略,并实现冷却的目的而无需消耗能量或使用辅助设备。根据被动日间辐射冷却技术的原理,本文分析了白天辐射冷却膜和涂料的设计思想,并分析和阐述了辐射冷却材料的开发历史和最新研究进度。最后,结合当前在构建冷却和个人热管理方面的应用,该技术的未来开发方向已被验证。关键字:全球变暖;温室效应;白天辐射冷却;发展课程;建筑冷却;个人热管理
基团。C – C 键的高反应性还会在各种反应条件下引起立方烷骨架的分解。13 为了开辟立方烷分子科学的新前景,我们开始了立方烷 C – H 转化化学的研究,其中我们选择立方烷的芳基化作为第一个也是最有价值的目标反应。芳基立方烷是立方烷衍生物,最近作为药理学上重要的联芳烃的生物电子等排体而受到关注。14 多芳基化立方烷是前所未有的立方烷衍生物,它们也因其由刚性定向芳基构建的独特、三维和多样化的化学空间而引人注目。在此,我们报道了一种通过定向邻位 -C – H 金属化进行的氨基立方烷钯催化芳基化反应。该方法允许在后期阶段对各种芳基基团进行区域选择性地安装到立方烷骨架上,最终首次合成了多芳基立方烷(图 1)。1988 年,Bashir-Hashemi 报道了立方烷的 C – H 苯基化,其中立方烷基溴化镁通过立方烷-1,4-双(N , N - 二异丙基酰胺)( 1a )的定向邻位锂化生成,然后用苯炔处理得到
5.4 学分转移 19 5.5 零科目注册/休学 20 5.6 一般评估规定 20 5.7 评估原则 21 5.8 评估方法 21 5.9 升学/留校察看/取消注册 22 5.10 重修科目 23 5.11 对评估结果提出上诉/对考试委员会的取消注册决定 23 5.12 特殊情况 24 5.13 评分 25 5.14 不同类型的 GPA 26 5.15 大学毕业要求 27 5.16 奖励分类指南 33 5.17 奖励分类 34 5.18 在学生记录中记录纪律处分 35 5.19 毕业 35 6. 科目大纲 36最终课程文件适用于 2016/17 学年入学学生。课程主办方可随时决定对其进行审查和更改。学生将在适当的时候被告知更改。ii