所研究的 LCLC 是色甘酸二钠 (DSCG) 的水溶液,这种材料的商品名为“色甘酸”或“色甘酸钠”,是预防过敏和哮喘相关症状的药物中的活性成分。2 在水中,DSCG 分子面对面堆叠,使其疏水核心免受极性环境的影响。这种自组装产生细长的圆柱形聚集体,直径约 2 纳米,堆叠距离为 0.34 纳米,这使它们类似于双链 DNA (dsDNA)。然而,dsDNA 是手性的,而 DSCG 分子不是,并且没有沿聚集体轴的持续扭曲。这种分子尺度的差异在宏观层面上表现出色。在水溶液中,dsDNA 分子相对于彼此扭曲,形成所谓的胆甾型液晶,其宏观螺距在微米级。分子手性和宏观手性之间微妙的关系仍是当前研究的课题。3 相反,水中的非手性 DSCG 聚集体彼此平行排列,形成具有优选方向 n ̂ 的镜像对称向列液晶,该方向称为指向矢。手性分子的手性堆积随处可见,而非手性分子的手性堆积却很少见。非手性分子形成的液晶的宏观镜像对称性破缺需要特殊的空间限制。Charles-Victor Mauguin 在巴黎参加了 Pierre Curie 关于物理效应对称性的讲座后,萌生了探索晶体学和液晶的想法,并
对于高性能计算,希望从整体SOC中分解缓存存储器,并通过异源集成技术重新整合它。将缓存从整体SOC中重新定位会导致降低晚期硅死模尺寸,从而导致较高的产量和较低的成本。在这项研究中,我们评估了使用DECA模制的M-Series™嵌入式缓存扇出溶液之间高端3D硅互连解决方案和低端基板溶液之间差距的方法。deca的M系列芯片首先面对FOWLP平面结构是一个理想的平台,用于构建嵌入式插入器,用于处理器芯片,缓存内存和深沟槽电容器的异质集成。deca的自适应模式®允许扩展到处理器chiplet和缓存内存之间的高密度互连。考虑了嵌入式缓存插波器的三种不同配置。垂直堆叠的面对面配置最小化处理器和高速缓存之间的互连长度,而横向配置为铜堆积的铜堆积提供了铜的互连,从而可以进一步缩放互连间距。这两种配置都有其特定的好处和缺点,这些作品在这项工作中详细描述了。关键词自适应图案,嵌入式缓存插入器,扇出晶圆级包装,异质集成,高性能计算,M系列
快速过热会导致“热逃亡”,这是一系列化学反应,可能导致温度无法控制的升高。当电池产生的热量超过其耗散到周围环境中时,就会发生。当电池过热时,它可能会在过度充电时发生,它可能会释放包括氢在内的易燃气体。气体可能会在贝斯模块中堆积,从而导致爆炸,这些爆炸可能释放有毒的烟雾和危险物质。暴露于高温也可以加速电池老化,从而增加故障的风险。3
每个人都使用 Excel。它位于您的同事的桌面上、您的经理的桌面上、您的桌面上 — 而且可能只用于一个部门。如果计划需要在整个公司内多个业务部门进行更改怎么办?数百人之间复制、粘贴和编辑并操纵数据以满足他们的特定需求会造成分散的混乱。随着电子表格的堆积和多个版本的存在,它们在来回的电子邮件交换中变得混乱和过时,使得整合几乎不可能。不幸的是,大多数财务专业人士浪费了宝贵的时间来尝试重新配置未以原始格式返回的表格。
该出版物报告了使用氧化化学蒸气沉积(OCVD)方法制造的聚(3,4-乙二醇)(PEDOT)薄膜中载体迁移率的主要增强。通过采用纳米结构工程,研究团队成功地优化了π-π堆积距离,从而实现了准二维(1D)电荷传输途径。这些进步导致了载流子的迁移率和热电性能,证明了OCVD制作的PEDOT薄膜用于下一代能量和电子应用的多功能潜力。这一显着的成就是M.S.出色的研究贡献的结果。学生Brian Dautel和Ph.D.学生Kafil Chowdhury,在Meysam博士在AMED实验室的监督下。
非对映选择过程是由使用含有α-苯基胺的氨基酸手性池衍生物产生的。7疏水π堆积基序(用虚线指示)将化合物具有很高的水解稳定性和对配体取代的整体惰性,例如图。1即使在10 d上pH 1处也不“展开”。相应地,水溶性化合物的范围很容易大规模制备。这些有利的研究使我们和合作者能够探索冶金生物化学的各个方面。8 - 14越来越多的证据表明,化合物模仿了短阳离子α-螺旋肽的特性。自然发生的环形抗癌和抗菌分子与它们具有多种结构特征。15
雷电、大风和冰雹是常见的天气相关断电现象。恶劣天气可能导致停电持续数天。雷电可能击中设备或树木,导致它们倒在电线和设备上。为了减少雷击的影响,我们在变电站和高压设备上安装了避雷器。避雷器可以安全地将雷电能量短接到地面。暴风雨和大风可能导致线路与树枝或其他电线接触。直线风和龙卷风可能会吹倒电线杆,造成数英里范围内的大面积损坏。冰在电线、电线杆和树枝上堆积,导致它们在重压下倒下或折断。大风会影响电线能承受的重量。