部件编号 CAN 通道 MCU I/O 接口 (V) Vin(最小值至最大值)(V) 低功耗模式 数据速率 [最小值] kbps 数据速率 [最大值] kbps 总线引脚电压 [最小值-最大值] (V) 可用 VIO 选项 GPIO 温度范围 (℃) 封装 更换
本报告是由美国政府某个机构资助的工作报告。美国政府、其任何机构及其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,或承担任何法律责任或义务,亦不保证其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定的商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或偏爱。本文表达的作者的观点和意见不一定表明或反映美国政府或其任何机构的观点和意见。
参 数 名 称 符 号 条 件 最小 最大 单 位 电源电压 V CC — -0.5 +7 V 输入钳位电流 I IK V I <-0.5V 或 V I >V CC +0.5V — ± 20 mA 输出钳位电流 I OK V O <-0.5V 或 V O >V CC +0.5V — ± 20 mA 输出电流 I O -0.5V
在核潜艇反应堆燃料中使用高浓缩铀 (HEU) 与使用低浓缩铀 (LEU) 之间存在某些设计权衡,这些权衡包括堆芯寿命和大小、总功率和反应堆安全性等因素。为了评估这些权衡,对三种分别使用浓缩度为 7%、20% 和 97.3% 的铀燃料的 50MWt 反应堆设计进行了比较。7% 和 20% 的设计假定使用二氧化铀 (U02) 燃料,燃料为“焦糖配置”,而 97.3% 的设计假定为分散型。(这些设计使用阿贡国家实验室 IBM 3033 上的 EPRI-Cell 计算机代码建模。通过 TYMNET 公共网络系统从麻省理工学院的 DEC VT-100 终端访问该设施)。结论是,20% 浓缩堆芯的设计寿命(1200 天满功率运行)可与 97.3% 浓缩堆芯相同。7% 浓缩堆芯无法维持这段时间的临界状态。但是,堆芯寿命可以达到 600 天满功率运行。7% 和 20% 浓缩堆芯都比 97.3% 浓缩堆芯大。但是,使用整体设计而不是环型设计可以弥补较大的堆芯尺寸。
JHR 是 CEA 卡达拉什正在建造的新型材料测试反应堆。目前,堆芯的中子特性是利用 HORUS3D/N 确定性方案计算的。该方案的工业路线采用两步法,首先是 APOLLO2 MOC 格子计算,然后是基于扩散理论的 CRONOS2 堆芯计算。APOLLO3 ® 是 CEA 新的确定性计算平台,它采用了先进的计算方法。在本文中,正在使用 APOLLO3 ® 带来的新方法为 JHR 建立一个新的参考计算方案。该计算方案通过 TRIPOLI4 ® 执行的参考随机模拟进行了验证。与在 APOLLO3 ® 中模拟 HORUS3D/N 方案的方案结果相比,格子步骤的改进可以显著减少燃料元件和 Hf 控制棒的吸收率偏差。新方案的主要变化在于使用子群自屏蔽法替代精细结构等效法。这些变化与细化几何网格和 383 能级组结构有关。来自晶格台阶的压缩截面用于计算插入五根 Hf 控制棒的 2D JHR 堆芯配置的中子平衡。新的计算方案中添加了堆芯反射器超级晶胞,以产生细化的反射器截面。使用较粗的 41 组结构执行的 MOC 2D 堆芯计算保留了晶格计算的改进,并可以更好地预测反应性和反应速率。下一步将使用包括堆芯实验装置在内的带耗尽层的 3D Sn MINARET 全堆芯计算。关键词:APOLLO3 ®、JHR、确定性计算方案、共振自屏蔽方法。